HC Emissions(Avg)-Model G(Buick 2.5L)

CO Emissions(Avg)-Model G(Buick 2.5L)

Emissions-Model G

1:54 PM
1991
ნ ,
Š
Wed,

Remarks	Base Fuel:	Up to 75000	miles: EEE.	After: Chevron	commercial														
MMT-NOx	0.173	0.261	0.287	0.341	0.412	0.432	0.399	0.391	0.338	0.353	0.354	0.339	0.406	0.353	0.373	0.471	0.469	0.411	0.394
EEE/Chev-NOx	0.142	0.234	0.313	0.338	0.405	0.511	0.400	0.408	0.334	0.347	0.373	0.377	0.427	0.443	0.422	0.512	0.497	0.499	0.503
MMT-CO	0.789	1.131	1.469	1.773	2.207	2.077	1.947	1.939	1.919	2.091	1.873	2.794	2.525	2.356	2.190	2.511	2.706	2.732	2.825
EEE/Chev-CO	0.758	1.243	1.631	1.732	2.191	2.033	1.770	2.058	1.682	2.075	2.282	2.737	2.053	2.084	2.234	2.198	2.818	3.054	2.907
MMT-HC	0.100	0.117	0.130	0.142	0.172	0.173	0.179	0.182	0.182	0.171	0.153	0.169	0.169	0.189	0.186	0.197	0.232	0.207	0.219
EEE/Chev-HC	0.101	0.113	0.120	0.106	0.136	0.140	0.146	0.136	0.139	0.138	0.123	0.146		0.148	0.164	0.161	0.194	0.206	0.197
Miles(×1000)	-	· LO	10	15	20	25	30	35	40	45:	50	55	09	65	70	75	80	85	06
	-	٠ ٨	<u>ب</u>	4	· CO	ဖ	7	· cc	6	10	-	12	3	4	. 12	16	17	18	19

Systems Applications International

4600 Marriott Dr., Suite 420, Raleigh, NC 27612 919-782-1033 Facsimile 919-782-1716

A Division of Clement International Corporation

Environmental and Health Sciences

TECHNICAL MEMORANDUM

TO:

Ethyl Corporation

FROM:

Ralph L. Roberson, P.E. Pall J. Pherin

DATE:

November 19, 1991

SUBJECT:

Review of Ford's Functional Analysis

INTRODUCTION

In comments submitted to the Ethyl Wavier Request Docket (No. A-91-46), Ford Motor Company describes the results of its emission control system functional analysis. 1,2,3 This technical memorandum examines Ford's functional analysis and concludes that it does not support the broad conclusion that Ford draws from the analysis. In particular, the results of the functional analysis do not, as Ford claims, "demonstrate that MMT [HiTEC 3000] has significantly impaired the function of emission control devices."

Ford's functional analysis consists of interchanging EGO sensors and catalysts between clear fuel vehicles and vehicles that accumulated mileage with the HiTEC 3000 fuel additive. Ford's testing sequence consisted of running three emission tests with interchanged EGO sensors, three with interchanged catalysts, and three with interchanged EGO sensors and catalysts. The emission tests conducted at 105,000 miles (prior to interchanging components) serve as baseline results. The results of Ford's analysis, expressed in terms of pollutant conversion efficiency are summarized in Table 1 (attached).

Based on the functional analysis results, Ford concludes, "[t]hese test

Letter from D.R. Buist, Ford Motor Company, to U.S. Environmental Protection Agency, Air Docket (LE - 131), dated October 3, 1991.

Letter from David L. Kulp, Ford Motor Company, to U.S. Environmental Protection Agency, Air Docket (LE - 131), dated October 28, 1991.

Facsimile transmission from Tom Lasley, Ford Motor Company to Dave Kortum, U.S. Environmental Protection Agency, dated November 15, 1991.

Memo - Ethyl Corporation November 19, 1991 Page two

results demonstrate that MMT [HiTEC 3000] has significantly impaired the function of emission control devices (EGO sensors and catalysts)."

The above-cited statement by Ford is simply incorrect because it mischaracterizes the test data. Ford's conclusion is that the "emission control device" is impaired; yet, Ford's discussion focuses only on its HC functional analysis for two Escorts (No. 315 and No. 316). However, Ford's data show that the NO_x conversion efficiency, as determined at 105,000 miles, for the clear fuel and HiTEC 3000 Escorts are 85.1 and 85.2 percent, respectively. These data do not suggest that either emission control device is "impaired." Corresponding values for CO conversion efficiencies are 74.8 and 72.6 percent. A 2 percent difference in conversion efficiency, at 105,000 miles, hardly proves that the HiTEC 3000 emission control device is impaired, especially in light of the fact that average CO conversion efficiencies for the four clear fuel vehicles are essentially equal to those of the four HiTEC 3000 vehicles.

DISCUSSION

Ford's results for HC conversion efficiency are not surprising. Assuming two vehicles have about the same engine-out emissions and one of the vehicles has lower tailpipe emissions than the other, the logical explanation is that one of the emission control systems is performing better than the other control system. Moreover, it is not surprising that emission control performance is somewhat portable. That is, if one interchanges the emission control systems, it would not be unusual to find (assuming all other sources of variability are controlled for) that lower tailpipe emissions follow the better performing emission control system. However, we disagree with Ford's conclusion that HiTEC 3000 is the only possible explanation for the differences in HC conversion efficiency. The fact is, each emission control system is unique and is influenced by a number of operating variables. If this were not the case, all vehicles with the same emission control technology system would have almost identical tailpipe emissions.

Memo - Ethyl Corporation November 19, 1991 Page three

Table 1 shows the functional analysis results for seven vehicles. Four are for clear fuel vehicles that receive emission control components from vehicles that accumulated mileage with the HiTEC 3000 fuel additive, and three are for HiTEC 3000 vehicles that receive emission control components from vehicles that accumulated mileage on clear fuel. Focusing on HC emissions, one observes that three of four clear fuel vehicles show decreased conversion efficiency with HiTEC 3000 components, and three of three HiTEC 3000 vehicles show increased conversion efficiency with the clear fuel components. This result is expected, given Ford's underlying emission data, and is not a new finding from the functional analysis. That is, Ford's emission data show increased HC emissions for the HiTEC 3000 vehicles, and one would not expect the functional analysis to contradict this result -- especially when the functional analysis uses the 105,000 mile emission data as its baseline.

Based on data submitted by Ford to EPA, we computed conversion efficiencies, at each mileage interval, for the eight vehicles tested by Ford. These results are presented in Tables 2, 3, and 4 (attached). We believe it is informative to examine the HC conversion efficiencies for the pair of clear-fuel Explorers (No. 305 and No. 307). At 5,000 miles, the HC conversion efficiency of these two vehicles differed by about 3 percent (94.6% versus 91.3%). At 105,000 miles, the HC conversion efficiency differed by almost 7 percent (89.9% versus 83.0%). Thus, Ford's own data show a significant difference in HC conversion efficiency between the two clear fuel vehicles at the start of the test program and a marked difference in catalyst deterioration over the duration of the test program -- and HiTEC 3000 cannot be the explanation.

Moreover, we believe that if Ford were to interchange the emission control systems between Explorer No. 305 and Explorer No. 307, Ford would find that the difference in HC conversion efficiency tended to follow the individual emission control systems. That is, Explorer No. 305 would show a decrease in

Letter to Mary T. Smith, U.S. Environmental Protection Agency from David L. Kulp, Ford Motor Company, dated September 23, 1991.

Memo - Ethyl Corporation November 19, 1991 Page four

HC conversion efficiency (perhaps approaching 83 percent) and Explorer No. 307 would show some increase in HC conversion efficiency. Obviously, HiTEC 3000 cannot be the cause or explanation for the 7 percent difference in HC conversion efficiency for these two Explorers. Some other uncontrolled variable (i.e., component-to-component differences or vehicle maintenance) must account for these differences in clear fuel conversion efficiencies.

Ford might attempt to rebut the above discussion by pointing to the differences in HC conversion efficiency between clear fuel Explorers and Explorers using HiTEC 3000. The HC conversion efficiencies presented in Table 2 superficially support this argument. However, we question the validity of the HC conversion efficiencies computed for Explorers using HiTEC 3000 because of the underlying tailpipe emission data. Explorer No. 306 experienced a number of problems that required unscheduled maintenance. For example, Ford reports a clogged fuel injector and a fouled spark plug at about 55,100 miles. Ford reports replacement of No. 2 fuel injector at 55,200 miles. At 105,000 miles, Ford's first four emission tests show incredibly high HC emissions (≈1.3 grams/miles). Ford discovered a cracked spark plug insulator, replaced the plug, and conducted six additional emission tests. Based on these six tests, HC emissions average about 0.66 grams/miles. Average HC emissions of 0.66 grams/mile reflect an increase of over 350 percent from the 55,000 mile measurements. We believe that the 105,000 mile measurements for Explorer No. 306 are much more illustrative of operational problems than of the effect of a fuel additive. Since Ford did not report any test results at 85,000 miles, we have no useful information on this vehicle after 55,000 miles.

The functional analysis results obtained by Ford for Explorer No. 306 add additional support to our belief that tests conducted at 105,000 miles reflect significant vehicle operational problems instead of emission control system deterioration. For example, baseline HC conversion efficiency for Explorer No. 306 is 80.5 percent. However, when the EGO sensor and catalyst from Explorer No. 306 are placed on clear fuel Explorer No. 305 and tested, HC conversion efficiency is found to be a respectable 89.5 percent (see Table 1).

Memo - Ethyl Corporation November 19, 1991 Page five

This HC conversion efficiency is not consistent with either: (1) extremely high HC emissions reported by Ford for Explorer No. 306 at 105,000 miles, or (2) the conclusion drawn by Ford that HiTEC 3000 significantly impairs the operation of emission control systems.

Likewise, Ford reports a number of operational problems with the other HiTEC 3000 Explorer (No. 304) that could affect emissions. The significant increase (i.e., on the order of 1 gram/mile) in engine-out HC emissions subsequent to the 20,000 mile tests is more likely associated with operational problems than with the use of any fuel additive. While No. 304 shows a steady increase in HC tailpipe emissions through 85,000 miles, there is a significant decrease in HC emissions between 85,000 and 105,000 miles. Indeed, in contrast to a decrease in HC conversion efficiencies for the clear-fuel Explorers from 85,000 to 105,000 miles (i.e., 91.2 to 89.9 percent and 86.7 to 83.0 percent), the HC conversion efficiency for No. 304 showed a substantial improvement over the same mileage interval. Simply stated, we believe there are too many problems and questions associated with the data obtained for the two HiTEC 3000 Explorers to warrant further analysis.

CONSISTENCY OF FUNCTIONAL ANALYSIS

The underlying hypothesis of Ford's functional analysis is that all variables are controlled for except the effect of HiTEC 3000 on emission control systems. Escort No. 315, with a baseline HC conversion efficiency of 91 percent, exhibited a conversion efficiency 86.3 percent with the EGO sensor and catalyst from HiTEC 3000 Escort No. 316. The HiTEC 3000 Escort, with a baseline HC conversion efficiency of 84.2 percent, exhibited a conversion efficiency of 90.6 percent with the EGO sensor and catalyst from the clear-fuel Escort. The symmetry of the HC results appear to support the hypothesis; however, the CO and NO_x results contradict the hypothesis.

For example, the clear fuel Escort, with a baseline NO_x conversion efficiency of 85.1 percent, shows a conversion efficiency of only 81.6 percent with the

Memo - Ethyl Corporation November 19, 1991 Page six

EGO sensor and catalyst from the HiTEC 3000 Escort. However, the baseline $\mathrm{NO}_{\mathbf{x}}$ conversion efficiency for the HiTEC 3000 Escort is 85.2 percent. Thus, Ford's functional analysis suggests a decrease in $\mathrm{NO}_{\mathbf{x}}$ conversion efficiency of 3.5 percent (85.1 - 81.6), which is not supported by its baseline data. This inconsistency indicates that Ford's functional analysis does not control for all variables except for the effect of HiTEC 3000. The CO functional analysis also produces inconsistent results. Both Escorts exhibit higher CO conversion efficiencies after the components are interchanged than either baseline conversion efficiency. The clear fuel Escort increases from 74.8 percent to 76.0 percent, and the HiTEC 3000 Escort increases from 72.6 percent to 75.2 percent. The only reasonable explanation is that the functional analysis is subject to operating variables (and measurement variability) in addition to the type of fuel used by the vehicles.

CONCLUSIONS

For the reasons discussed in this memorandum, we believe the conclusion drawn by Ford from its functional analysis is not supported by its test data. For example, the pair of clear fuel Explorers exhibit as large a difference in HC conversion efficiency as do the clear fuel and HiTEC 3000 Escorts No. 315 and No. 316 for which Ford conducted its functional analysis. The Explorer data clearly demonstrate that variables other than the use of HiTEC 3000 influence the performance of individual emission control systems. Moreover, the results obtained from the functional analysis for CO and NO_{x} conversion efficiencies are inconsistent with the findings and conclusion drawn by Ford from the HC conversion results. This inconsistency further suggests that use of HiTEC 3000 is not the only potential variable affecting the conversion efficiencies reflected in Ford's functional analysis.

TABLE 1. CONVERSION EFFICIENCIES FROM FORD'S FUNCTIONAL ANALYSIS

		НС		СО	NOx	
		Interchanged		Interchanged		Interchanged
Vehicle	Baseline	EGO & Catalyst	Baseline	EGO & Catalyst	Baseline	EGO & Catalys
No. 315	91.0	86.3	74.8	76.0	85.1	81.6
No. 316	84.2	90.6	72.6	75.2	85.2	85.9
No. 317	89.6	87.1	71.7	N.R.	82.4	N.R.
No. 318	84.8	86.9	69.7	62.5	83.7	80.3
No. 305	89.9	89.5	71.1	71.3	91.0	92.2
No. 306	80.5	91.8	63.0	84.8	89.8	80.2
No. 307	83.0	77.0	62.2	61.1	91.9	91.9
No. 304	76.0	N.R.	66.0	N.R.	86.8	N.R.

N.R. Data necessary to compute conversion efficiencies not reported in Ford's submission to EPA.

TABLE 2. HC CONVERSION EFFICIENCY BASED ON FORD TEST DATA.

FORD ESCORTS

	CLE	AR	HiTEC 3000		
Mileage	#315	#317	#316	#318	
5K	95.0	94.4	95.7	93.4	
20K	92.5	91.1	92.6	88.1	
55K	89.9	89.2	84.8	85.4	
105K	91.0	89.6	84.2	84.8	

FORD EXPLORERS

	CLE	AR	HiTE(3000
Mileage	#305	#307	#304	#306
5K	94.6	91.3	91.4	94.1
20K	94.2	90.2	89.6	93.3
55K	92.1	85.7	84.2	94.4
85K	91.2	86.7	72.7	
105K	89.9	83.0	76.0	80.5

TABLE 3. CO CONVERSION EFFICIENCY BASED ON FORD TEST DATA.

FORD ESCORTS

	CLE	AR	HiTEC 3000		
Mileage	#315	#317	#316	#318	
5K	88.6	88.6	89.0	85.6	
20K	82.6	83.5	81.6	79.4	
55K	76.0	78.9	75.1	81.4	
105K	74.8	71.7	72.6	69.7	

FORD EXPLORERS

	CLE	AR	HiTEC	3000
Mileage	#305	#307	#304	#306
5K	89.1	85.8	85.7	89.0
20K	85.8	83.0	79.6	85.3
55K	77.1	69.8	79.6	88.1
85K	74.4	72.1	64.1	
105K	71.1	62.2	66.0	63

TABLE 4. NO_x CONVERSION EFFICIENCY BASED ON FORD TEST DATA

FORD ESCORTS

	CLE	AR	HiTEC 3000		
Mileage	#315	#317	#316	#318	
5K.	90.6	90.4	92.3	90.7	
20K	90.0	89.6	90.4	88.9	
55K	86.9	86.0	87.1	85.7	
105K	85.1	82.4	85.2	83.7	

FORD EXPLORERS

	CLEAR		HiTEC	3000
Mileage	#305	#307	#304	#306
5K	96.6	94.4	93.2	96.2
20K	95.5	94.8	92.5	96.8
55K	93.8	88.5	95.8	77.5
85K	93.1	87.9	88.3	
105K	91.0	91.9	86.8	89.8

EFFICIENCY EVALUATION OF 24 USED CATALYTIC CONVERTERS

by

Melvin N. Ingalls

-- Revision A --

FINAL REPORT

Prepared for

Ethyl Corporation
Health and Environment Department
451 Florida Street
Baton Rouge, LA 70801

November 1991

SOUTHWES' SAN ANTONIO DETROIT RESEARCH INSTITUTE
HOUSTON
WASHINGTON, DC

EFFICIENCY EVALUATION OF 24 USED CATALYTIC CONVERTERS

bу

Melvin N. Ingalls

-- Revision A --

FINAL REPORT

Prepared for

Ethyl Corporation
Health and Environment Department
451 Florida Street
Baton Rouge, LA 70801

November 1991

FOREWORD TO REVISION A

At the request of Ethyl Corporation, the Final Report for SwRI Project 08-4068, "Efficiency Evaluation of 24 Used Catalytic Converters," dated July 1991, has been revised. The purpose of this revision was to change some CO emission light-off times listed in Tables 4 to 27 of the original final report as "0.0" seconds, to indicate that these times were, in fact, not obtained for some reason. This revision changes tables that showed a light-off time of "0.0" from the low range CO instrument (low CO), when in fact, the 50 percent conversion point was greater than the full scale reading of the low CO instrument. In this revision, rather than showing "0.0" for these cases, "--" is used to indicate that there was no time read for this instrument. This revision also changes to "--", some low CO and CO instrument 50% conversion times that were listed as "0.0" for other reasons. In the course of this effort, the CO light-off times in Tables 15 and 17 were discovered to be incorrectly stated in the original report, and are corrected in this revision. These changes are only for the CO emission light-off times from the light-off tests, and do not affect any other emissions or results from other test conditions. The tables changed, and the reasons for the changes, are shown below.

Table no.	EMISSION INSTRUMENT	PARAMETER CHANGED	REASON
4 to 6	low CO	50% light-off time deleted	50% point off-scale
10 & 11	со	50% light-off time deleted	instrument malfunction
13	со	50% light-off time deleted	instrument malfunction
14	low CO	50% light-off time deleted	50% point off-scale
15	low CO CO	50% light-off time corrected 50% light-off time corrected	incorrect reading incorrect reading
16	low CO	50% light-off time deleted	instrument malfunction
17	low CO	50% light-off time corrected	incorrect reading
18 & 19	low CO	50% light-off time deleted	50% point off-scale
20 & 21	low CO CO	50% light-off time deleted 50% light-off time deleted	50% eff. not achieved 50% eff. not achieved
22	low CO	50% light-off time deleted	50% point off-scale
23	со	50% light-off time deleted	instrument malfunction
24 to 27	low CO	50% light-off time deleted	50% point off-scale

TABLE OF CONTENTS

			Page								
FORE	WORD	•••••••••••••••••••••••••••••••••••••••	ii								
LIST	OF FIG	URES	. iv								
		LES									
	0		•••								
I.	INTRO	DDUCTION	1								
II.	EQUI	PMENT, FUEL, AND INSTRUMENTATION	1								
	A.	Test Cell	1								
	В.	Slave Engine									
	C.	Fuel									
	D.	Emissions Instrumentation	2								
III.	CATA	LYTIC CONVERTERS TESTED	2								
IV.	TEST	PROCEDURES	3								
	A.	Light-Off Test									
	B.	Steady-State Performance Test									
	C.	Test Procedure for Each Converter									
	D.	Test Chronology									
	E.	Quality Assurance Tests	5								
V.	RESULTS										
	A.	Steady-State Efficiency Evaluations	5								
	B.	Light-Off Tests	5								
	C.	Quality Assurance	5								
REFE	RENCE	S	7								
TABL	ES (1 T	hrough 29)	9-37								
FIGU	RES (1 '	Through 22)	39-60								
APPE		equest for Proposal A Documentation									

LIST OF FIGURES

/		`
1 si	.di	١.
	#	i i
l 🖷	焩	9 /
C,		_

<u>Figure</u>		Page
1	Schematic of Slave Engine Exhaust System	. 39
2	HC Emissions from Converters B-7 to B-12	. 40
3	CO Emissions from Converters B-7 to B-12	. 41
4	NO _X Emissions from Converters B-7 to B-12	. 42
5	HC Emissions from Converters B-13 to B-14	. 43
6	CO Emissions from Converters B-13 to B-14	. 44
7	NO _x Emissions from Converters B-13 to B-14	. 45
8	HC Emissions from Converters E-1 to E-6	. 46
9	CO Emissions from Converters E-1 to E-6	. 47
10	NO _X Emissions from Converters E-1 to E-6	. 48
11	HC Emissions from Converters F2LA, F2RA, F6LA and F6RA	. 49
12	CO Emissions from Converters F2LA, F2RA, F6LA, and F6RA	50
13	NO _X Emissions from Converters F2LA, F2RA, F6LA, and F6RA	51
14	HC Emissions from Converters T-1 to T-6	52
15	CO Emissions from Converters T-1 to T-6	53
16	NO _X Emissions from Converters T-1 to T-6	54
17	50% Light-Off Efficiency for Converters B-7 to B-12	55
18	50% Light-Off Efficiency for Converters B-13 to B-14	56
19	50% Light-Off Efficiency for Converters E-1 to E-6	57
20	50% Light-Off Efficiency for Converters F2LA, F2RA, F6LA and F6RA	. 58
21	50% Light-Off Efficiency for Converters T-1 to T-6	59
22	QA Converter CO Efficiencies	60

LIST OF TABLES

<u>Table</u>			age
1 .	Analysis of EM-1273-F Unleaded Gasoline	••,••	. 9
2	Emissions Instrument	• • • •	10
3	List of Converters Tested	· • • •	11
4	Test Results for Converter B-7		12
5	Test Results for Converter B-8		13
6	Test Results for Converter B-9		14
7	Test Results for Converter B-10		15
8	Test Results for Converter B-11		16
9	Test Results for Converter B-12		17
10	Test Results for Converter B-13		18
11	Test Results for Converter B-14		19
12	Test Results for Converter E-1		20
13	Test Results for Converter E-2		21
14	Test Results for Converter E-3		22
15	Test Results for Converter E-4		23
16	Test Results for Converter E-5		24
17	Test Results for Converter E-6		25
18	Test Results for Converter F2LA		26
19	Test Results for Converter F2RA		27
20	Test Results for Converter F6LA		28
21	Test Results for Converter F6RA		29

LIST OF TABLES (CONT'D)

<u>Table</u>	<u>P</u> 2	age
22	Test Results for Converter T-1	30
23	Test Results for Converter T-2	31
24	Test Results for Converter T-3	32
25	Test Results for Converter T-4	33
26	Test Results for Converter T-5	34
27	Test Results for Converter T-6	35
28	Exhaust System Reaction Check	36
29	CO Efficiency Spread for QA Converter Tests	37

I. INTRODUCTION

Twenty-four used catalytic converters furnished by Ethyl Corporation were evaluated for efficiency and light-off time on a slave engine. This work was conducted in response to an Ethyl Corporation letter request of December 4, 1990, and subsequent telephone discussions. A copy of the letter and its attachments are included in the Appendix A, together with the SwRI proposal prepared in response to that request. The work described herein was conducted by the Department of Emissions Research (DER) of Southwest Research Institute (SwRI) at their laboratory in San Antonio, Texas. This report describes the test cell, slave engine, emissions measured, converters tested, test procedures used, and the results of the tests performed.

II. EQUIPMENT, FUEL, AND INSTRUMENTATION

A. Test Cell

All testing was conducted in Cell No. 6 of SwRI's Department of Emissions Research. This cell is configured for catalyst aging and evaluation. Two engines, a 350 CID Chevrolet and a 7.5 liter Ford, are available for catalyst aging. Another 350 CID Chevrolet gasoline engine is installed in the test cell for light-off and efficiency evaluations. The load absorbers for the engines are eddy current dynamometers capable of absorbing up to 175 horsepower at 6000 rpm. The test cell has the necessary instrumentation to measure exhaust emissions before and after the converter being tested.

B. Slave Engine

The Chevrolet 350 CID engine used for catalyst evaluations is a heavy duty model equipped with a stock 1990 Camaro electronic port injection system. Control of the fuel injection to adjust air fuel ratio setting is provided by a laboratory fuel injection system capable of a wide range of air fuel ratios. The fuel control is Model IC 5160 Fuel Injection System manufactured by Intelligent Controls, Inc. of Novi, Michigan. SwRI modified the fuel injection control system to permit the air fuel ratio to be cycled at frequencies from 0.25 to 2 hertz. For this project the fuel control was set to vary the air fuel ratio plus or minus 1/2 A/F ratio at frequency of 1 hertz.

The engine exhaust system is configured especially for catalyst evaluations. The amount of engine exhaust that flows through the converter test section is adjustable, to permit a wide range of space velocities. A heat exchanger is installed in the exhaust piping to permit a range of catalyst inlet temperatures without changing engine conditions. There is a quick acting diverter valve ahead of the converter test section, to permit the engine and exhaust conditions to be set without having exhaust flow through the test converter. For a simulated light-off test, this valve diverts the engine exhaust away from the converter until the start of the light-off test, then the exhaust is quickly switched to the converter. A schematic of the exhaust piping is shown in Figure 1.

C. Fuel

The fuel used for these tests was Howell EEE emission test gasoline as requested by Ethyl Corporation. Within the Department of Emissions Research the fuel was coded as EM-1273-F. A copy of the Howell analysis of the fuel is provided in Table 1.

D. <u>Emissions Instrumentation</u>

Heated sample lines before and after the converter test section deliver exhaust sample to the emissions instrument cart. Two complete sets of emission instrumentation are available at the cell for measuring emission concentrations both before and after the catalytic converter being tested. To obtain the converter efficiencies, total HC, CO, NO_X , was measured before and after the converter. In addition, O_2 was measured before and after the converter, and CO_2 before the converter. Total hydrocarbons were measured by heated FID; CO and CO2 by NDIR; O_2 by polarographic instruments; and NO_X by heated chemiluminescence. The instruments used are listed in Table 2.

TABLE 2. EMISSIONS INSTRUMENTS

Emission	Instrument	Range
	INLET	
нс	Beckman 402 FID	0-2500 ppm
СО	Beckman 315A NDIR	0-15000 ppm
CO ₂	Beckman 315B NDIR	0-16%
МОХ	Teco CL	0-2500 ppm
02	Beckman OM-11EA	0-5%
	OUTLET	
нс	Beckman 402 FID	1000 ppm
CO (low)	Beckman 315B NDIR	0-500 ppm
CO (high)	Beckman 315B NDIR	15000 ppm
МОД	Teco CL	0-2500 ppm
02	Beckman OM-11EA	0-5%

HIL CATALYTIC CONVERTERS TESTED

Ethyl Corporation furnished 24 used conveners for testing. These conveners were from a variety of automobiles. The conveners tested were labeled with a single letter plus a single number code. It was our understanding that half of the conveners tested had been installed on cars operated on unleaded gasoline, the other half of the conveners were from cars using unleaded gasoline with a MINIT additive. At the time the conveners were tested, we did not know which conveners were from cars operated on clear fuel and which conveners were from cars operated on fuel with the MINIT additive.

Prior to shipment to SwRI, several of their converters had their inlet and exit sections cut off so that the catalyst substrate could be inspected. The inlet and exit cones of these converters were disposed of before it was decided to test them on an engine. To test these converters on the slave engine, it was necessary to obtain used converters of the same design, cut the ends off these converters, and weld the used ends on the Ethyl supplied converters. For four of the converters it was not possible to weld on

replacement ends. The substrates were removed from these four converters and fitted into research style converter cans that were on-hand at SwRI. The converters tested are listed in alpha-numeric order in Table 3. The converters that required replacement ends are noted in the table.

IV. TEST PROCEDURES

The performance test on each converter consisted of a light-off test, patterned after the GM "Cell 102 Test," and warmed-up steady state efficiency evaluations at six different redox ratios. Redox ratio is a ratio of reducing components to the oxidizing components in the exhaust. In the literature, (1)* the redox ratio, R, is defined as shown below:

$$R = \frac{CO + H_2 + 3(HC)}{2O_2 + NO}$$

Unfortunately, there was no reliable method available for continuously measuring H_2 in exhaust. It was therefore necessary to estimate the amount of H_2 in the exhaust from the amount of CO in the exhaust. Typically, a multiplier of 1.33 is used for $CO.^{(2)}$ For this study, NO_X was used for NO, so that the redox ratio for this study was defined as:

$$R = \frac{1.33(CO) + 3(HC)}{2O_2 + NO_x}$$

Since we were not set up to calculate this parameter at the test cell, but did have air fuel ratio, at the cell, a curve of redox ratio versus air fuel ratio, developed at the start of testing, was used with A/F ratio to set exhaust condition. The light-off test and steady state efficiency evaluation are described in more detail in the paragraphs below.

A. <u>Light-Off Test</u>

The light-off test begins with the converter below 104°F, and the engine exhaust bypassing the converter. For these tests the engine speed was set at 1800 RPM, the A/F ratio was set at 14.45 and the fuel cycled plus and minus 0.5 A/F ratio about this setting, at a frequency of 1.0 hertz. When a stable engine exhaust temperature of 932°F was reached, the exhaust was switched to flow through the converter, using a quick-acting valve. Emission concentrations were measured continuously before and after the converter and the times to reach 50 percent conversion efficiency for HC, CO and NO_x were calculated.

^{*}Superscript numbers in parentheses refer to References at end of report.

Steady-State Performance Test

B.

The warmed-up steady state efficiency evaluations were conducted at the same engine RPM and exhaust temperature as the light-off tests, but at six different redox ratios. These redox ratios were intended to be: 0.25, 0.60, 1.0, 1.3, 1.6, and 1.9. As explained above, A/F ratio was used as the actual parameter changed. The A/F used were 14.85, 14.65, 14.45, 14.40 and 14.30. For the steady-state efficiency tests, sufficient time is allowed for the converter to reach an equilibrium temperature before emissions data are recorded.

C. <u>Test Procedure for Each Converter</u>

As much as possible, all converters from one group (B, E, F, or T) were tested together, but not necessarily in numerical order within the group. Each converter was mounted in the test section, with the exhaust bypassing the converter and flowing through the measuring orifice (see Figure 1.) The converter exhaust flow was then adjusted for the test converter engine size. Since the actual space velocity each converter was originally designed for was not known, the test exhaust flow was determined from the ratio of the test converter engine displacement to the slave engine displacement. This ratio was used with the total slave engine flow to obtain the test converter flow as follows:

FLOW_{test} = (DISP_{test}/DISP_{slave}) * FLOW_{slave}

After the flow was adjusted to the test value, the fuel control was set for a constant A/F ratio and adjusted to provide the first A/F ratio. The fuel control settings for the plus and minus 1/2 A/F ratios were determined, and set into the fuel control. The fuel control perturbation circuit was switched from "constant" to "one hertz." The quick acting bypass valve was actuated to route the exhaust flow through the converter test section.

For the first few tests, the converter light-off test at 14.45 A/F ratio was run first, then the steady state efficiency evaluations going from lean to rich air fuel ratios (numerically low to high redox ratios.) For the next few tests, the light-off tests were changed to occur in the middle of steady-state A/F tests, just before the steady state 14.45 A/R ratio test was run. It became apparent after a few runs, that the light-off test should be run after all steady-state efficiency evaluations to give the best repeatability and accuracy. The remaining tests were all run with the light-off test following all of the steady-state efficiency evaluations.

The before and after emissions levels were recorded on strip charts. After the completion of the test of each converter, the strip chart data were read and entered into a spreadsheet, and the efficiencies and redox ratio at each A/F ratio calculated. The results from each converter test were faxed to Ethyl as soon as the test data were processed.

D. <u>Test Chronology</u>

Testing was begun on March 1, 1991. A total of 39 complete evaluations (steady-state efficiency plus light-off test) were conducted. Testing was completed on May 13, 1991. The first tests of E1, E2, B13 and B14 were inadvertently run with the fuel control set to 2 hertz rather than one hertz. These converters were retested later in the program with the fuel control at the correct frequency.

E. Quality Assurance Tests

QA tests were run with the Cell 6 QA standard converter before and after the test series. One QA test was run before, and four QA tests were run after the Ethyl test program. Because of the A/F frequency switch had been mislabeled, the QA test prior to the test series was run at two herz, rather than one hertz. This mislabeling was not discovered until after the first four test converters had been run. This difference in A/F cycling frequency rendered the initial QA converter test unusable in the repeatability calculations.

V. RESULTS

A. Steady-State Efficiency Evaluations

The steady-state efficiency results are shown in Tables 4 to 27. There is one table for each converter, with the tables in alpha-numeric order by converter designation. To aid in comparing the results, the steady-state efficiencies for each emission type are plotted as a function of redox ratio by converter type in Figures 2 to 16. The figures show that while there are differences in converter efficiencies from one converter design to another, within a given design, all the efficiencies fall within a narrow band.

B. Light-Off Tests

The light-off times are given at the bottom of the steady-state test results in Tables 4 to 27. They are shown in histograms, with all converters of the same type on the same graph in Figures 17 to 21. Because of the nature of the test, there is a larger variation in the light-off times than in the steady-state efficiencies.

C. Quality Assurance

For the same engine A/F ratio, there were variations in emissions concentrations at the converter inlet, and consequently some variation in redox ratio from test-to-test. The inlet concentrations for each emission type for all tests are listed in the Appendix B. The exhaust temperature at the converter inlet was held constant by means of fans on the exhaust piping, thus the temperature of the exhaust upstream of the converter varied somewhat while the converter inlet temperature stayed constant. It is hypothesized that the variations in converter inlet concentration were due the different reaction rates in the exhaust system caused by small variations in the exhaust system temperatures. These different concentrations then caused slightly different redox ratios for the same A/F ratio.

To determine the concentration changes in the exhaust system, emission measurements were made in the exhaust ports and in the converter inlet at different A/F ratios and at two different temperatures. The results of those tests are shown in Table 28. For the 930°F measurements, note that the HC, CO, and O_2 concentrations are less, while the NO_X , CO_2 are greater than the exhaust port concentrations, indicating that the HC and CO had been oxidized in the exhaust system and that some NO_X had been formed. At the lower temperature of 750°F, the HC and CO were also oxidized in the exhaust system, but no NO_X was formed. Also note the difference in the value of the redox ratio between the exhaust port and the catalyst inlet for the same A/F ratio. Graphs of the A/F ratio as a function of redox ratio for each converter by converter type are located in Appendix B.

Repeatability was defined by tests of the QA converter. Prior to running the post-project QA tests, some scheduled update of the test cell instrumentation was permitted to begin. This work consisted of

connecting the emissions instruments to a computer controlled data logging system. There should have been no effect on the emissions measurement system. However, it was discovered in later analysis of the QA tests that because of an error in wiring, the converter inlet recorder HC and NO_X channels had been damaged so that they did not respond in a linear manner. Thus, only the CO data from the QA checks are valid. These data are presented in graphic form in Figure 22. Because the A/F ratios give slightly different redox ratios, the CO efficiency was plotted as a function of redox ratio, and a curve fit determined for each set of test data. The range of CO efficiency at several redox ratios was then determined from the curves. These efficiency ranges are shown below.

TABLE 29. CO EFFICIENCY SPREAD FOR QA CONVERTER TESTS

Redox Ratio	CO <u>% Efficiency Spread</u>
0.6	0.2
0.8	0.2
0.1	<3.5
1.2	3.5·
1.4	3.5
1.6	3.0
1.8	3.0
2.0	4.0

The efficiency spread can be used as an indication of the test-to-test and day-to-day repeatability.

REFERENCES

1. Hammerle, R.H., and Wu, C.H., "Three-Way Catalyst Performance Characterization" SAE Paper 810275.

TABLES

TABLE 1. ANALYSIS OF EM-1273-F UNLEADED GASOLINE

KOVELL HYDROCAREOUS INC. EEE LILLAGED CASOLINE

Bater Co: 90s	-17	PAUK COS	215	_ Date af	5788 0 5588	OCTOGER 2	7_1990
	ASTH	HHI SP			SPUES.	ANALYTIC	AL RESIGNS
TEST	a 4 22 0	HIH.	HAH	HIH.	MAX.	HHI	G.H.
Specific gravity, 60/60	91298 91298	0.734	0.744		,	0.766	0.742
Gravity, •API Rosparch octang number	D26 99	98.7 96.0	. 61.2	AT A		<u> 58.8</u>	<u>59.07</u>
Hoter octano number	02700		000	93.0		96.0	
Sensitivity	96799	. Дер 7.5	OK-K	7.5		88° 0	
lend, sm/gol	03237	0.000	0.050	0.00	9.05	8.0	A AA9
6600 D-0 DO		4.000	9.939	0.00	6.69	0.000	0.002
Diarillarien, of	D86						
18P		75	93	75	93	<u> 90</u>	93
10%		120	135	120	133	122	128
50%		200	230	500	· 230	333	220
90 %		300	325	300	329	313	308
EP			415		415	391	376
Sulfur, utz	03120		9,100		0.16	0.603	A AAG
Phosphorous, gm/gal	03231		0.005		9.005		<u>0.003</u> 0.0001
Roid voper prossuro, psi	0323	8.8	9.2	8.7	9.2	9.1	<u> 9.9</u>
Hydrocarbon composition, volX	01319						
Aremeics			35.0		33.0	_32.7	30,2
Olofins			10.0		10.0	2.9	2.6
Soturates		ಚಿಕ್ಕಾ ಡಿ	3			45.A	67.6
Existent gua, mg/100ml	5381		5.0		(0)	1.2	1.76
Copper strip corresion	0130		9		(0)	18	
Oxidation stability	0529	240			(0)	2600	
Porticulate matter, mg/l	02276		1.0		(0)	0.2	
®Fyol econsay nuasentor		2601	8225		(0)	3673	
oc Feeter		Repart	3		(0)	0.9967	
Aleehel, volz			9		(0)	Q	
Corpon weight fraction	2191	Hobers			60)	0.8621	
Hydrogon weight fraction	E191	Roper((a)	9.1321	•
Not hooting volue, btu/lb	9249	Acabri			(a) <u>1</u>	8564	18310
Carbon weight frestien	edeed	Report	:		(8)	0.8479	0.844
Hos heasing value, bowlb	BEEE	Hopers	;			861A	18559
Color	1				=	GBREN_	

oful osers frumeroser & 5 foster colsulared wing 5-191 & 0-240 values.

(a) the requirement or not ceterosocia.

TABLE 2. EMISSIONS INSTRUMENTS

		• •
Emission	Instrument	Range
	INLET	
нс	Beckman 402 FID	0-2500 ppm
со	Beckman 315A NDIR	0-15000 ppm
CO ₂	Beckman 315B NDIR	0-16%
NOX	Teco CL	0-2500 ppm
02	Beckman OM-11EA	0-5%
	OUTLET	
нс	Beckman 402 FID	1000 ppm
CO (low)	Beckman 315B NDIR	0-500 ppm
CO (high)	Beckman 315B NDIR	15000 ppm
NOX	Teco CL	0-2500 ppm
02	Beckman OM-11EA	0-5%

TABLE 3. LIST OF CONVERTERS TESTED

Converter Designation	Vehicle Engine Size, Liters	Test Dates
B-7	2.8	4/12, 5/6
B-8	2.8	4/16, 5/9
B-9	2.8	4/17
B-10	2.8	4/16, 5/6
B-11*	2.8	4/17
B-12*	2.8	4/16, 5/13
B-13*	3.8	3/11, 3/25, 3/29
B-14*	3.8	3/8, 3/26, 3/29
E-1*	1.9	3/1, 3/21, 3/28, 4/23
E-2 [*]	1.9	3/4, 3/22, 3/26, 3/28
E-3	1.9	4/10
E-4	1.9	4/10
E-5	1.9	4/11
E-6	1.9	4/11
F2LA ^{‡‡}	5.0 (1 bank)	4/29
F2RA **	5.0 (1 bank)	4/24
F6RA [⇔]	5.0 (1 bank)	4/24
F6LA ^{‡‡}	5.0 (1 bank)	4/25
T-1	3.0	4/1
T-2	3.0	4/1
T-3	3.0	4/3
T-4	3.0	4/3
T-5°	3.0	4/4
T-6°	3.0	4/4

Notes:

These converters had replacement ends welded on cans.
 These catalyst bricks were put in research type cans.

	TARGET/ CALCULATED	EXHAUST	CATALYST	50% CONVERSION		
TEST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME,	(A	REDOX
NO.	RATIO	AND UNITS	CONCENTRATION		%	RATIO
B-7	14.85	HC, ppmC	100		82.3	0.208
5/6/91	14.95	LOW CO, ppm			98.7	0.200
13/0/31	14.55		1			
		CO, ppm	2380		99.5	
	,	NOX, ppm CO2, %	1622		28.1	
		O2, %	14.33 0.75			
		02, 90		<u> </u>		
	14.65	HC, ppmC	224		93.1	0.576
	14.67	LOW CO, ppm	0		99.4	
		CO, ppm	4519		99.7	
		NOX, ppm	1588		63.1	
		CO2, %	14.33			
		O2, %	0.50			
	14.55	HC, ppmC	262	, .	93.7	0.769
	14.59	LOW CO, ppm	0		99.4	
		CO, ppm	5522	i	99.6	
 		NOX, ppm	1566		78.4	
		CO2, %	14.49			
		O2, %	0.45			
	14.45	HC, ppmC	374		89.2	1.347
	14.42	LOW CO, ppm	0		76.1	1.047
	17.72	CO, ppm	7780		78.3	
İ		NOX, ppm	1510		92.5	
		CO2, %	14.49		52.5	
		O2, %	0.35			·
	44.4		1		00.4	4 407
<u> </u>	14.4	HC, ppmC	386		86.4	1.437
	14.40	LOW CO, ppm	0		66.4	
		CO, ppm	8093		69.3	
		NOX, ppm	1488		89.9	<u> </u>
]		CO2, % O2, %	14.33		}	}
				 		
	14.30	HC, ppmC	424		82.1	1.790
]	14.33	LOW CO, ppm	0	}		
Ì		CO, ppm	9128	1	45.6	
		NOX, ppm	1488		87.3]
		CO2, %	14.33	[
ļ		O2, %	0.30			
	14.45	HC, ppmC	349	12.5	84.4	1.235
		LOW CO, ppm	0		62.7	1
		CO, ppm	7163	27.5	64.4	}
		NOX, ppm	1555	13.0	91.1	
		CO2, %	14.33]
		O2, %	0.35	1		

TABLE 5. TEST RESULTS FOR CONVERTER B-8

	TARGET/ CALCULATED	EXHAUST	CATALYST	50% CONVERSION		
VEST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME,	EFFICIENCY,	REDOX
NO.	RATIO	AND UNITS	CONCENTRATION	(SEC)	%	RATIO
B-8	14.85	HC, ppmC	87		86.0	0.213
5/09/91	14.91	LOW CO, ppm	0	-	99.3	
0.00.0		CO, ppm	2177		98.9	
		NOX, ppm	1310		19.4	
		CO2, %	14.65		13.4	
		O2, %	0.68			
	14.65		212		94.2	0.637
	l l	HC, ppmC	\	· ·		0.637
	14.64	LOW CO, ppm	0	i	99.6	
		CO, ppm	4448		99.5	
		NOX, ppm	1277		67.7	
	1	CO2, %	14.65			
		02, %	0.45			
	14.55	HC, ppmC	249		96.1	0.887
	14.56	LOW CO, ppm	0	1	99.6	
		CO, ppm	5232		99.5	
		NOX, ppm	1186		83.0	1
		CO2, %	14.65			
		O2, %	0.38			
	14.45	HC, ppmC	361		91.2	1.301
	14.45	LOW CO, ppm	0		84.4	
		CO, ppm	6707	·	81.5	
		NOX, ppm	1186		90.4	
		CO2, %	14.65		30.4	İ
,		02, %	0.33			•
	14.4	HC, ppmC	411		88.1	1 550
			1 0		74.3	1.558
	14.40	LOW CO, ppm	1)	
		CO, ppm	7470		65.9	
		NOX, ppm	1163		88.1	
		CO2, %	14.49			
		O2, %	0.30			
	14.30	HC, ppmC	449		80.9	2.18
	14.30	LOW CO, ppm	0			
		CO, ppm	9047		37.9	
		NOX, ppm	1117		85.4	
	1	CO2, %	14.49			
·		O2, %	0.25			
	14.45	HC, ppmC	374	12.5	92.1	1.304
		LOW CO, ppm	0		89.3	
		CO, ppm	6707	22.5	88.1	
		NOX, ppm	1197	16.0	93.7	
		CO2, %	14.49	10.0	33.7	
		1	l .			
	<u> </u>	O2, %	0.33		1	<u>l </u>

TABLE 6. TEST RESULTS FOR CONVERTER B-9

	TARGET		The same of the sa			
	CALCULATED	EXHAUST	E	50% CONVERSION	aranakisisi. Erit kikitus viita iriski	
TEST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME,		REDOX
10.	RATIO	AND UNITS	CONCENTRATION	(SEC)	%	RATIO
B-9	14.85	HC, ppmC	70		76.3	0.208
4/17/91	14.89	LOW CO, ppm	0		99.4	
		CO, ppm	2109		99.4	
·	İ	NOX, ppm	1366	, ·	23.6	
		CO2. %	³ 14.81			
		02, %	0.66			
	14.65	HC, ppmC	174		90.5	0.615
	14.65	LOW CO, ppm	177		99.4	0.013
	17.05	CO, ppm	4307		99.4	
		NOX, ppm	1277		59.0	
		CO2, %	14.81		39.0	
		02, %	0.44			
	14.55				21.0	0.700
	14.55	HC, ppmC	212		91.2	0.763
	14.59	LOW CO, ppm	0		99.6	
		CO, ppm	4845		99.7	·
		NOX, ppm	1272		68.5	
		CO2, %	14.81		1	
		02, %	0.40			
	14.45	HC, ppmC	287		90.4	1.217
	14.47	LOW CO, ppm	0		94.8	İ
		CO, ppm	6377		94.6	
		NOX, ppm	1254		94.0	·
		CO2, %	14.81			
·		O2, %	0.32			
	14.4	HC, ppmC	312		88.7	1.464
	14.42	LOW CO, ppm	0		86.4	1.404
	17.72	CO, ppm	7086		85.9	İ
		1	1245		92.9	
		NOX, ppm CO2, %			92.9	1
		O2, %	14.84			
	14.30	HC, ppmC	396		84.1	2.121
:	14.31	LOW CO, ppm	0	ľ		
		CO, ppm	8727		54.6	
		NOX, ppm	1186		91.5	
		CO2, %	14.81			
·		O2, %	0.24		 	
	14.45	HC, ppmC	299	9.5	89.0	1.430
		LOW CO, ppm	0		89.3	
		CO, ppm	6707	18.0	89.8	:
		NOX, ppm	1231	18.5	96.5	
		CO2, %	14.91			
		02, %	0.28			

1		TARGET/					
		CALCULATED	EXHAUST	CATALYST	50% CONVERSION		
	TEST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME,	EFFICIENCY,	REDOX
	NO.	RATIO	AND UNITS	CONCENTRATION	(SEC)	9%	DITAR
Ī	B-10	14.85	HC, ppmC	82		73.2	0.213
	5/6/91	14.91	LOW CO, ppm	0		99.3	0.2.0
			CO, ppm	2217		99.5	
			NOX, ppm	1521		19.2	
		*	CO2, %	14.49			•
			O2, %	0.68			
		14.65	HC, ppmC	162		86.4	0.467
		14.71	LOW CO, ppm	0	ļ	99.5	• • • • • • • • • • • • • • • • • • • •
			CO, ppm	3680		99.7	
			NOX, ppm	1510		49.8	
			CO2, %	14.65			
			02, %	0.50			
		14.55	HC, ppmC	237		91.6	0.719
		14.61	LOW CO, ppm	0		99.5	0.713
		1	CO, ppm	4874		99.8	
	1		NOX, ppm	1499		69.2	
			CO2, %	14.55			
			O2, %	0.43			
		14.45	HC, ppmC	287		93.8	1.049
	1)	14.50	LOW CO, ppm	0		98.0	1.000
~	[CO, ppm	6213		97.7	
			NOX, ppm	1488		94.1	·
			CO2, %	14.49			
			O2, %	0.36			
		14.4	HC, ppmC	349		90.6	1.411
		14.41	LOW CO, ppm	0		86.4	
			CO, ppm	7470	}	86.0]
			NOX, ppm	1477		93.2	,
	`		CO2, %	14.49			ļ
			O2, %	0.32		<u> </u>	
		14.30	HC, ppmC	411		86.7	1.891
		14.32	LOW CO, ppm	0		66.4	
			CO, ppm	8967		66.3	
			NOX, ppm	1455		90.8	
			CO2, %	14.33			
			O2, %	0.28			
		14.45	HC, ppmC	262	10.0	92.4	0.984
			LOW CO, ppm	0	12.0		
			CO, ppm	6109			
- MIL	<u></u>		NOX, ppm	1543	1	1	
	"	1	CO2, %	14.49			
	1	1	O2, %	0.38			

TABLE 8. TEST RESULTS FOR CONVERTER B-11

	TARGET/ CALCULATED	EXHAUST	CATALYST	50% CONVERSION		
TEST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME,	4 (44.400,000) (1.000,000)	REDOX
NO.	RATIO	AND UNITS	CONCENTRATION		96	RATIO
B-11	14:85	HC, ppmC	57		88.4	0.205
4/17/91	14.90	LOW CO, ppm	0		99.2	
		CO, ppm	2041		91.0	
		NOX, ppm	1247		20.4	
		CO2, %	14.33			
		02, %	0.64			
	14.65	HC, ppmC	150		92.6	0.556
	14.67	LOW CO, ppm	0		99.6	,
		CO, ppm	3888		94.6	
		NOX, ppm	1220	·	56.0	ļ
		CO2, %	14.49		Ī	
<u> </u>		O2, %	0.44			
	14.55	HC, ppmC	224		92.6	0.89
	14.55	LOW CO, ppm	. 0		99.1	
		CO, ppm	5305		95.6	
		NOX, ppm	1231		74.0	ľ
		CO2, %	14.49			
	 	O2, %	0.37	 		
1	14.45	HC, ppmC	249		91.6	1.19
,	14.48	LOW CO, ppm	0		98.4	
		CO, ppm	5888		95.8	
		NOX, ppm	1163	1	92.4	
		CO2, %	14.39			
		O2, %	0.30			ļ.———
	14.4	HC, ppmC	287		89.3	1.46
	14.43	LOW CO, ppm	0		92.8	ļ
		CO, ppm	6556		89.2	1
		NOX, ppm	1117		94.4	
		CO2, %	14.39	1		ļ
		O2, %	0.27	<u> </u>		<u> </u>
	14.30	HC, ppmC	374		82.6	2.39
	14.29	1	0	li e e e e e e e e e e e e e e e e e e e		1
		CO, ppm	8567	l l	48.8	
		NOX, ppm	1070	3	89.4	1
		CO2, %	14.42	1		1
		O2, %	0.21	 		
	14.45		254	i		1
		LOW CO, ppm	0	,		1
		CO, ppm	5668			1
		NOX, ppm	1209	1	93.7	
7		CO2, %	14.49			
	,	O2, %	0.31			ł

TABLE 9. TEST RESULTS FOR CONVERTER B-12

	TARGET/	EVEAUCT	CATALVOT	FOR CONTINUE DOLON		
	CALCULATED	EXHAUST		50% CONVERSION		
TEST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME,	k = 7 c c c c c c c c c c c c c c c c c c	REDOX
40	RATIO	AND UNITS	CONCENTRATION	(SEC)	96	RATIO
B-12	14.85	HC, ppmC	87		84.3	0.214
5/13/91	14.91	LOW CO, ppm	0		99.1	
		CO, ppm	2177		98.9	
		NOX, ppm	1254		36.6	
		CO2, %	14.65		30.0	
		02, %	0.68			
	14.05					
	14.65	HC, ppmC	174		90.7	0.546
	14.67	LOW CO, ppm	0		98.9	
		CO, ppm	3818		98.7	
	Ì	NOX, ppm	1254		60.2	
		CO2, %	14.65	}		
	ļ	O2, %	0.45			
	14.55	HC, ppmC	287		94.0	0.83
	14.57	LOW CO, ppm	0		98.8	
		CO, ppm	5160		98.4	
		NOX, ppm	1243	ŧ	83.8	
		CO2, %	14.81			}
		02, %	0.40			İ
	14.45	HC samC	312		90.6	1.16
	14.48	HC, ppmC LOW CO, ppm	0		88.1	1.10
	14.40	1 ' '	6035		88.9	
		CO, ppm	1209		1	
		NOX, ppm	i		93.7	
		CO2, % O2, %	14.81			
<u></u>	 		 	 		
	14.4	HC, ppmC	374		86.9	1.47
	14.42	LOW CO, ppm	0		66.7	
		CO, ppm	7163		67.2	1
		NOX, ppm	1197		90.5	1
		CO2, %	14.81		1	
		02, %	0.30		ļ	
	14.30	HC, ppmC	424		81.5	1.87
	14.34		0	1		
		CO, ppm	8488	1	38.9	[
		NOX, ppm	1197	1	85.3	
		CO2, %	14.65		33.5	
		02, %	0.28	1		
					T	
	14.45	1 '''	324		S	1.00
		LOW CO, ppm	0			
		CO, ppm	5888	1	1	
		NOX, ppm	1220	l l	94.8	-
7		CO2, %	14.65			
		O2, %	0.38		1	1

TABLE 10. TEST RESULTS FOR CONVERTER B-13

TEST 1NO.	TARGETI CALCULATED AIR-FUEL RATIO	EXHAUST CONSTITUENTS AND UNITS	CATALYST INLET CONCENTRATION	50% CONVERSION LIGHT-OFF TIME, (SEC)		REDOX RATIO
B-13 3/29/91	14.85 14.94	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, %	120 0 1906 1577 14.17		87.1 99.4 29.9	0.188
	14.65 14.66	O2, % HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, % O2, %	0.69 174 0 4945 1521 14.17 0.50		92.4 99.8 56.9	0.613
	14.55 14.62	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, % O2, %	214 0 5449 1488 14.33 0.48		93.8 99.6 63.1	0.713
	14.45 14.50	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, %	274 0 6707 1443 14.02 0.40		96.0 98.2 92.0	1.042
	14.4 14.43	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, %	324 0 7547 1421 14.33 0.35		91.9 90.6 92.0	1.320
	14.30 14.34	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, %	374 0 8887 1377 14.17 0.30		86.0 71.6 87.2	1.771
	14.45		287 0 7010 1432 14.02 0.37	14.5	96.1 98.2 91.9	1.152

TABLE 11. TEST RESULTS FOR CONVERTER B-14

	TARGET/			The second secon		ar arasitay ar 14
	CALCULATED	EXHAUST	CATALYST	50% CONVERSION		
[EST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME.	Ext. 5 2 125 22 1	REDOX
0.	RATIO	AND UNITS	CONCENTRATION	1	%	RATIO
				(020)		
3–14	14.85	HC, ppmC	130		88.9	0.282
3/29/91	14.88	LOW CO, ppm	0		99.5	
		CO, ppm	2992			
		NOX, ppm	1668		30.8	
		CO2, %	14.49			
		O2, %	0.69			
	14.65	HC, ppmC	192		93.1	0.525
	14.70	LOW CO, ppm	0		99.6	0.52
	14.70		_		. 33.6	
		CO, ppm	4307]		
		NOX, ppm	1634		51.3	
		CO2, %	14.49			
		O2, %	0.52			<u> </u>
	14.55	HC, ppmC	239	}	95.8	0.74
	14.60	LOW CO, ppm	0		99.7	
		CO, ppm	5305		<u></u>	1
		NOX, ppm	1588		66.2	
		CO2, %	14.49			ļ
		02, %	0.44			}
	14.45		312		91.9	1.224
		HC, ppmC	312	ţ	1	1.22
	14.45	LOW CO, ppm	1		90.0	
		CO, ppm	7086			
		NOX, ppm	1548		91.1	
		CO2, %	14.33			
		O2, %	0.35			ļ <u>-</u>
	14.4	HC, ppmC	349		90.6	1.43
	14.40	LOW CO, ppm	0		83.9	
		CO, ppm	7780			
		NOX, ppm	1543		87.0	
		CO2, %	14.49			
		02, %	0.32			
	44.00				05.4	4.65
	14.30	HC, ppmC	374		85.4	1.65
	14.36	LOW CO, ppm	0			
		CO, ppm	8408		64.5	
		NOX, ppm	1521		86.8	}
	1	CO2, %	14.49	1		
		O2, %	0.30			ļ
	14.45	HC, ppmC	349	11.0	93.7	1.13
		LOW CO, ppm	0	24.5	91.5	
		CO, ppm	7316	•		ł
		NOX, ppm	1577	13.0	92.8	
		CO2, %	14.33	1	32.0	
	1	02, %	0.40			1
	<u> </u>	1 02, 70	0.40	<u> </u>	J	

Table 12. Test results for converter e-1

	TARGET/					
	CALCULATED	EXHAUST	[49] M. A. M. M. M. M. M. M. M. M. M. M. M. M. M.	50% CONVERSION	1.5. V92000019N4999990	
EST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME,		REDOX
NO.	RATIO	AND UNITS	CONCENTRATION	(SEC)	%	RATIO
E-1	14.85	HC, ppmC	75		70.6	0.230
4/23/91	14.85	LOW CO, ppm	0		95.0	
	, , , , , ,	CO, ppm	2109		94.3	
		NOX, ppm	1321		31.4	
	_	CO2, %	14.97			
		O2, %	0.59			
	14.65	HC, ppmC	137	·	76.0	0.522
	14.68	LOW CO, ppm	"0		89.0	V. V&.
·	14.00	CO, ppm	3680		90.1	
		NOX, ppm	1277		57.0	
:		CO2, %	14.81		57.0	
		O2, %	0.44			,
	14.55	HC, ppmC	199	,	75.4	0.950
	14.54	LOW CO, ppm	0		76.9	
		CO, ppm	5017		77.8	į
		NOX, ppm	1231		67.5	t
		CO2, %	14.81)
	<u> </u>	O2, %	0.32			
	14.45	HC, ppmC	274		74.3	1.374
	14.44	LO₩ CO, ppm	0		56.6	
ŧ		CO, ppm	6258		58.2	1
1		NOX, ppm	1220		75.4	
		CO2, %	14.65] .
		O2, %	0.27		\	
	14.4	HC, ppmC	312		75.6	1.936
	14.36	1	0			
	14.55	CO, ppm	7470		45.8	
		NOX, ppm	1163		82.7	
		CO2, %	14.65	1		
		O2, %	0.22		<u> </u>	-
	14.30	HC, ppmC	336		72.7	2.06
	14.34	, ,	0	1	16.7	2.00
]	140.340	CO, ppm	7936	}	35.6	
		1	l.		l l	
		NOX, ppm CO2, %	1140		83.5	
		O2, %	14.65	1		
						1
	14.45		249		1	1.38
		LOW CO, ppm	0		1	
L		CO, ppm	6258]	1	
		NOX, ppm	1105	1	73.9	
	1	CO2, %	14.81			
1		O2, %	0.27	<u> </u>	1	l

TABLE 13. TEST RESULTS FOR CONVERTER E-2

	TARGET/ CALCULATED	EXHAUST	CATALYST	50% CONVERSION	ete uza	
FEOT	名10881 。 - 1 ta e c - 1 t e e e - 700		1			DEDOV
TEST	AIR-FUEL RATIO	CONSTITUENTS	INLET	LIGHT-OFF TIME.	199	50 St. 10
NO.	RATIO::	AND UNITS	CONCENTRATION	(SEC)	%	RATIO
E-2	14.85	HC, ppmC	100		75.7	0.303
3/28/91	14.84	LOW CO, ppm	0	~	95.7	
		CO, ppm	2856			· .
		NOX, ppm	1186		36.0	1
	·	CO2, %	14.49			
		02, %	0.62		}	
	14.65	HC, ppmC	174		76.2	0.584
	14.67	LOW CO, ppm	1 7		76.8	0.504
	14.07	CO, ppm	4237		70.8	
		NOX, ppm	1163		51.8	
		CO2, %	14.49		31.0	
		02, %	0.47			
	14.55				76.0	0.902
	14.55	HC, ppmC	249		60.0	0.902
	14.56	LOW CO, ppm	0	1	60.0	
		CO, ppm	5522		50.1	
		NOX, ppm	1070		59.1	
		CO2, %	14.17			
		O2, %	0.40		ļ	
	14.45	HC, ppmC	299		74.6	1.233
)	14.47	LOW CO, ppm	0		52.2	
		CO, ppm	6707			
		NOX, ppm	1046		64.1	
		CO2, %	14.02			
		02, %	0.35			
	14.4	HC, ppmC	324		74.9	1.403
	14.43		0			ļ
		CO, ppm	7163		38.8	
		NOX, ppm	1058		66.9	
		CO2, %	14.17			
		02, %	0.32	:		
	14.30	HC, ppmC	399		71.5	1.893
	14.33		0			1.000
	17.55	CO, ppm	9047		31.3	1
		NOX, ppm	1058		73.9	
		CO2, %	14.17			
		02, %	0.30			
	14.45		299	34.5	76.4	1.206
	14.43	LOW CO, ppm	299	29.5	55.5	1.200
		1 ' '	1	29.5	33.3	
		CO, ppm	6556	200	63.4	1
		NOX, ppm	1058	29.0	03.4	
7		CO2, %	14.17			
		O2, %	0.35		1	1

TABLE 14. TEST RESULTS FOR CONVERTER E-3

	TARGET/					ári a eilead Arai
	CALCULATED	EXHAUST	CATALYST	50% CONVERSION		
TEST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME,	EFFICIENCY,	REDOX
NO.	RATIO	AND UNITS	CONCENTRATION	(SEC)	%	RATIO
E-3	14.85	HC, ppmC	55		63.8	0.261
4/10/91	14.83	LOW CO, ppm	0	}	99.2	
		CO, ppm	2448		97.5	
		NOX, ppm	1443	·	22.6	
	٠ .	CO2, %	14.65		22.0	
		02, %	0.58			
	14.65	HC, ppmC	125		75.3	0.643
	14.63	LOW CO, ppm	0		94.0	
	14.00	CO, ppm	4378		93.8	•
		NOX, ppm	1432		57.4	
		CO2, %	14.49		37.4	
		O2, %	0.41			
	14.55	HC, ppmC	174		78.0	0.959
	14.53	LOW CO, ppm	1 0		84.1	0.555
	14.55	CO, ppm	5232		83.3	
		NOX, ppm	1377		64.6	
		CO2, %	14.65		04.0	
		02, %	0.32			
	14.45	HC, ppmC	212		79.4	1.128
	14.49	LOW CO, ppm	0	1	80.0	1.120
	17.75	CO, ppm	6035		79.6	
		NOX, ppm	1355		66.8	
			14.49		00.8	
		CO2, % O2, %	0.32			•
	14.4	HC, ppmC	274		78.2	1.756
	14.37	LOW CO, ppm	2/4		70.2	1.750
	14.57	CO, ppm	7625		55.4	
		1 ' '	1299		78.8	
		NOX, ppm CO2, %	14.49		70.0	
		O2, %	0.25			
	14.30	HC, ppmC	312		79.1	1.859
	14.34	LOW CO, ppm	0.12		′	1.005
	14.54	CO, ppm	8408		53.9	
		1	1277		78.4	
		NOX, ppm	14.33		/0.4	
		CO2, % O2, %	0.26			
	14.45	HC, ppmC	254	23.8	79.4	1.587
	14.45	LOW CO, ppm	254	23.6	67.1	1.367
		CO, ppm	7010	42.0	64.2	
		1 ' '	1410	22.0	72.5	
		NOX, ppm CO2, %	14.33	22.0	/2.5	
		i '	1		1	
	<u> </u>	O2, %	0.25	<u> L</u>	1	<u>L</u>

TABLE 15. TEST RESULTS FOR CONVERTER E-4

	TARGET/			1000		
	CALCULATED	EXHAUST		50% CONVERSION	16000 - 1 1 - 139 J 1 1019940000900	
TEST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME,	200 S. 100 S. 100 S. 100 S. 100 S. 100 S. 100 S. 100 S. 100 S. 100 S. 100 S. 100 S. 100 S. 100 S. 100 S. 100 S	REDOX
NO:	RATIO	AND UNITS	CONCENTRATION	(SEC)	%	RATIC
E-4	14.85	HC, ppmC	40		75.1	0.186
4/10/91	14.92	LOW CO, ppm	0		98.2	
		CO, ppm	1974		95.7	
		NOX, ppm	1399		18.4	
		CO2, %	14.42			
		02, %	0.67			
	14.65	HC, ppmC	125		82.3	0.62
	14.63	LOW CO, ppm	0		93.8	0.02
		CO, ppm	4027		93.9	
		NOX, ppm	1321		54.7	
		CO2, %	14.49			
		O2, %	0.40			
	14.55	HC, ppmC	174		84.3	0.86
	14.56	LOW CO, ppm	0		89.5	0.00
		CO, ppm	4945		89.3	
		NOX, ppm	1288		63.2	
		CO2, %	14.49			
	_	02, %	0.35			
	14.45	HC, ppmC	212		79.4	1.36
	14.45	LOW CO, ppm	0		72.0	
		CO, ppm	6183		70.2	
		NOX, ppm	1243		70.8	
	,	CO2, %	14.49			
		O2, %	0.26			·
	14.4	HC, ppmC	249		81.1	1.63
	14.40	LOW CO, ppm	0		61.9	
		CO, ppm	6782		63.0	
		NOX, ppm	1231		75.6	
		CO2, %	14.49			
		O2, %	0.24			
	14.30	HC, ppmC	324		79.9	2.41
	14.29	LOW CO, ppm	0			
		CO, ppm	8567		48.8	
		NOX, ppm	1174		83.5	
		CO2, %	14.33			ļ
		O2. %	0.20			
	14.45	HC, ppmC	212	20.5	79.4	1.44
		LOW CO, ppm	0	22.5	67.4	
		CO, ppm	6258	23.5	64.2	
		NOX, ppm	1265	25.5	68.4	
		CO2, %	14.33]		
		O2, %	0.25]

Table 16. Test results for converter e-5

	TARGET/			170 (5-7)		
	CALCULATED	EXHAUST	CATALYST	50% CONVERSION		
TEST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME.	EFFICIENCY,	REDOX
NO.	RATIO	AND UNITS	CONCENTRATION	(SEC)	%	RATIO
E-5	14.85	HC, ppmC	37		64.6	0.233
4/11/91	14.86	LOW CO, ppm	0		→=	
		CO, ppm	2177		96.6	
[NOX, ppm	1070		18.7	•
		CO2, %	14.33			
		O2, %	0.59			· · · · · · · · · · · · · · · · · · ·
	14.65	HC, ppmC	75		70.6	0.479
	14.68	LOW CO, ppm	0	·	·	
		CO, ppm	3061	1	95.6	
		NOX, ppm	1058	İ	49.3	
		CO2, %	14.65	{		
		O2, %	0.40			1
	14.55	HC, ppmC	174	,	78.0	1.039
	14.52	LOW CO, ppm	0			
		CO, ppm	5204		72.2	
		NOX, ppm	1034		62.5	
1		CO2, %	14.49	·		
		O2, %	0.31			
1	14.45	HC, ppmC	199		78.1	1.429
	14.45	LOW CO, ppm	0			
Ţ		CO, ppm	5961		65.8	
		NOX, ppm	1022		73.0	
1		CO2, %	14.49		'	
		O2, %	0.25			
	14.4	HC, ppmC	224		75.7	1.698
}	14.41	LOW CO, ppm	0			
		CO, ppm	6481		57.1	,
		NOX, ppm	. 1022		74.2	
		CO2, %	14.49			
	<u> </u>	O2, %	0.22			
	14.30	HC, ppmC	312	,	77.4	2.740
	14.28	LOW CO, ppm	0			,
		CO, ppm	8488		36.4	
		NOX, ppm	998		83.6	·
		CO2, %	14.49			
		O2, %	0.17			
	14.45	HC, ppmC	187	21.5	76.6	1.200
		LOW CO, ppm	0			
		CO, ppm	5449	40.5	61.3	
444		NOX, ppm	1070	25.5	62.6	
		CO2, %	14.33		<u> </u>	
		O2, %	0.27			

Table 17. Test results for converter e-6

	TARGET/					
	CALCULATED	EXHAUST	· .	50% CONVERSION		
EST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME.		REDOX
NO.	RATIO	AND UNITS	CONCENTRATION	(SEC)	%	RATIO
E-6	14.85	HC, ppmC	37		70.5	0.223
4/11/91	14.87	LOW CO, ppm	0		98.6	
		CO, ppm	2177		88.7	
		NOX, ppm	1174		17.5	٠.
		CO2, %	14.49		!	
		02, %	0.62			
	14.65	HC, ppmC	100		77.9	0.499
	14.69	LOW CO, ppm	0		93.7	
		CO, ppm	3542		87.8	
		NOX, ppm	1151		48.1	
1		CO2, %	14.65	ļ		
		02, %	0.44			-
	14.55	HC, ppmC	162		79.7	0.830
ļ	14.57	LOW CO, ppm	0		88.4	0.050
	14.57	CO, ppm	4660		84.0]
		, ,	1140		56.2	
		NOX, ppm	14.65		56.2	Ì
		CO2, % O2, %	0.35			
	44.45		<u> </u>			4.400
	14.45	HC, ppmC	212		76.8	1.193
	14.48	LOW CO, ppm	0		66.0	
}		CO, ppm	5814		59.9	
		NOX, ppm	1082		64.2	}
		CO2, %	14.49			•
		O2, %	0.30			
1	14.4	HC, ppmC	224		75.7	1.506
	14.43	LOW CO, ppm	0		63.5	
		CO, ppm	6332	}	58.2	
		NOX, ppm	1093		67.9	[
		CO2, %	14.49			
		O2, %	0.25	·		
	14.30	HC, ppmC	324		76.6	2.750
	14.28	LOW CO, ppm	0			
}		CO, ppm	8567		33.5	İ
1		NOX, ppm	1034	1	79.4	}
		CO2, %	14.49	1		
	_	O2, %	0.17			
	14.45	HC, ppmC	199	18.5	78.1	1.110
	17.75	LOW CO, ppm	0	15.0	68.0	
		CO, ppm	5814	17.0	62.6	
		1	1082	30.5	60.7	
		NOX, ppm CO2, %	14.49	30.5	80.7	
Ť		O2, %	0.32			

TABLE 18. TEST RESULTS FOR CONVERTER F2LA

	TARGET/			aca manage		
	CALCULATED	EXHAUST	}	50% CONVERSION	100000	
TEST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME,	E 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	REDOX
NO.	RATIO	AND UNITS	CONCENTRATION	(SEC)	%	RATIO
F2LA	14.85	HC, ppmC	87		74.8	0.251
4/29/91	14.84	LOW CO, ppm	0		95.3	
		CO, ppm	2353		95.9	
		NOX, ppm	1668		22.6	
1	<i>1</i>	CO2. %	14.49			
		O2, %	0.59			
	44.05				24.4	
	14.65	HC, ppmC	174		81.1	0.569
	14.66	LOW CO, ppm	0		89.5	
		CO, ppm	4097		89.6	
		NOX, ppm	1611		52.9	
		CO2, %	14.49	·		
· · · · · · · · · · · · · · · · · · ·		O2, %	0.44			
	14.55	HC, ppmC	224		80.5	0.747
	14.59	LOW CO, ppm	0		81.1	
		CO, ppm	4945		81.3	
		NOX, ppm	1611		57.5	
		CO2, %	14.49		07.0	
		02, %	0.41]	
	14.45	1 '''	287		79.1	1.15
	14.47	LOW CO, ppm	0		63.1	
		CO, ppm	6258	·	62.5	
		NOX, ppm	1555		65.5	
		CO2, %	14.49			
····		O2, %	0.32			
	14.4	HC, ppmC	324		76.6	1.56
	14.39	LOW CO, ppm	0	}	56.7	
	14.00	CO, ppm	7470		55.9	
		NOX, ppm	1543		72.5	}
					12.5	
		CO2, % O2, %	14.49 0.27			
						
	14.30	HC, ppmC	374		76.9	2.07
	14.31	LOW CO, ppm	0			
		CO, ppm	8488		43.1	Ì
		NOX, ppm	1521		79.4	ļ
		CO2, %	14.49			
		O2, %	0.22	·		
	14.45	HC, ppmC	287	10.0	79.1	1.20
		LOW CO, ppm	0		61.4	1
		CO, ppm	6481	30.5	60.7	
			1	ì	1	
		NOX, ppm	1577	11.0	66.8	
		CO2, %	14.49	}		1
	<u> </u>	O2, %	0.32		<u> </u>	<u> </u>

	TARGET/ CALCULATED	EXHAUST		50% CONVERSION		
TEST:	AIR-FUEL RATIO	CONSTITUENTS AND UNITS	INLET CONCENTRATION	LIGHT-OFF TIME, (SEC)	EFFICIENCY, %	REDOX
F2RA		· · · · · · · · · · · · · · · · · · ·	62	(020)		
4/24/91	14.85 14.92	HC, ppmC LOW CO, ppm	0		73.5 98.4	0.204
7124131	17.32	CO, ppm	2177		95.6	
		NOX, ppm	1277		14.4	
		CO2, %	14.49			
		O2, %	0.69			
	14.65	HC, ppmC	162		79.7	0.632
	14.65	LOW CO, ppm	0		87.1	0.002
		CO, ppm	4448		86.3	
-		NOX, ppm	1243		55.9	
		CO2, %	14.33]	
		O2, %	0.44			· · · · · · · · · · · · · · · · · · ·
	14.55	HC, ppmC	212		81.9	0.721
	14.62	LOW CO, ppm	0	•	81.4	
		CO, ppm	5017		81.6	
		NOX, ppm	1243		58.8	
		CO2, %	14.49			
		O2, %	0.44	· · · · · · · · · · · · · · · · · · ·		
	14.45	HC, ppmC	287		75.4	1.338
	14.44	LOW CO, ppm	0	\	64.9	
		CO, ppm	7010		61.7	
		NOX, ppm	1186	İ	72.5	
		CO2, %	14.65			
		O2, %	0.32			
	14.4	HC, ppmC	299		74.6	1.498
	14.41	LOW CO, ppm	0		62.9	<u> </u>
		CO, ppm	7316		59.6	l
		NOX, ppm	1163		74.1	
		CO2, %	14.65			
		O2, %	0.30			
	14.30	HC, ppmC	374		71.2	1.964
	14.33	LOW CO, ppm	0			
		CO, ppm	8887		40.9	
		NOX, ppm	. 1151		80.4	
		CO2, %	14.65			1
		02, %	0.27			
	14.45	HC, ppmC	299	15.0	76.4	1.472
		LOW CO, ppm	0		60.7	1
1		CO, ppm	7163	26.5	55.0	
		NOX, ppm	1151	13.5	75.0	
		CO2, %	14.49			
L		02, %	0.30	<u> </u>	1	<u></u>

TABLE 20. TEST RESULTS FOR CONVERTER F6LA

	TARGET/	CVIALIOT	CATALVOT	CON CONVERGION		
	CALCULATED	EXHAUST		50% CONVERSION		
TEST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME,		REDOX
NO.	RATIO	AND UNITS	CONCENTRATION	(SEC)	%	RATIO
F6LA	14.85	HC, ppmC	85		-20.7	0.216
4/25/91	14.91	LOW CO, ppm	0		95.7	
		CO, ppm	2177		94.5	
		NOX, ppm	1254		23.7	
		CO2, %	14.02		20.,	
		O2, %	0.67			
	14.65		155		53.7	0.559
	1	HC, ppmC	_		l e	0.559
	14.67	LOW CO, ppm	0		71.5	
		CO, ppm	3888		73.0	
	İ	NOX, ppm	1197		48.0	
		CO2, %	14.02			
		O2, %	0.44			
	14.55	HC, ppmC	232	·	59.5	0.940
	14.54	LOW CO, ppm	0		44.5	
		CO, ppm	5522		46.5	
		NOX, ppm	1140		56.2	ļ
		CO2, %	14.17]
		O2, %	0.37			
	14.45	HC, ppmC	279		61.9	1.140
•	14.49	LOW CO, ppm	0			
		CO, ppm	5814		35.1	
		NOX, ppm	1093		60.0	
		CO2, %	14.17			
		O2, %	0.32	·		
	14.4	HC, ppmC	314		61.8	1.490
	14.41	LOW CO, ppm	314		01.0	1.430
	14.41	• •	1		75.6	
		CO, ppm	7163		35.6	
		NOX, ppm	1093		62.3	
		CO2, %	14.17	ļ.	ļ	
		O2, %	0.30			<u> </u>
	14.30	HC, ppmC	386		59.8	1.925
	14.33	LOW CO, ppm	0			
		CO, ppm	8567		31.0	
		NOX, ppm	1082		67.6	Ì
		CO2, %	14.17			
·		O2, %	0.27			
	14.45	HC, ppmC	299	19.5	64.1	1.381
		LOW CO, ppm	0			
		CO, ppm	6632	NA	35.7	
		NOX, ppm	1105	16.0	62.7]
		CO2, %	14.02		""	1
•		O2, %	0.30		!	1

EST NO:	TARGET/ CALCULATED AIR-FUEL RATIO	EXHAUST CONSTITUENTS AND UNITS	CATALYST INLET CONCENTRATION	50% CONVERSION LIGHT-OFF TIME, (SEC)		REDOX RATIO
F6RA 4/24/91	14.85 14.90	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, % O2, %	67 0 2041 1243 14.81 0.67		82.0 94.1 97.1 20.1	0.200
	14.65 14.70	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, % O2, %	147 0 3888 1209 14.49 0.49		73.2 69.8 71.4 41.3	0.506
	14.55 14.55	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, % O2, %	224 0 5377 1174 14.49 0.37	,	66.6 51.1 52.6 50.1	0.911
	14.45 14.46	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, % O2, %	287 0 6481 1220 14.49 0.32		62.9 41.8 56.0	1.240
	14.4 14.42	HC, ppmC	304 0 7010 1186 14.49 0.30		60.2 36.2 57.9	1.438
	14.30 14.34	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, %	364 0 8408 1163 14.49 0.27		57.9 32.3 61.3	1.860
	14.45	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, % O2, %	274 0 6258 1186 14.49 0.32	20.0 NA NA 26.0	62.7 37.5 56.9	

TABLE 22. TEST RESULTS FOR CONVERTER T-1

	TEST	TARGET/ CALCULATED AIR-FUEL	EXHAUST CONSTITUENTS	CATALYST INLET	50% CONVERSION LIGHT-OFF TIME,		REDOX
	NO.	RATIO	AND UNITS	CONCENTRATION	6 15 4	% ·	RATIO
	T-1 4/1/91	14.85 14:86	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, % O2, %	87 0 2652 1611 14.49 0.64		83.6 99.0 22.9	0.262
		14.65 14.70	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, % O2, %	150 0 3958 1611 14.65 0.49		88.9 99.5 52.9	0.497
		14.55 14.55	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, % O2, %	219 0 5377 1577 14.49 0.37		91.0 98.9 72.3	0.869
(#		14.45 14.48	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, % O2, %	274 0 6556 1543 14.49 0.35		90.0 93.3 89.6 84.6	1.128
		14.4 14.44		299 0 6934 1566 14.33 0.32	·	87.2 85.0 76.3 89.6	1.266
		14.30 14.37	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, %	324 0 7625 1510 14.65 0.25		87.8 80.1 58.2 95.8	1.722
(ii)		14.45	HC, ppmC LOW CO, ppm CO, ppm NOX, ppm CO2, % O2, %	312 0 7163 1555 14.39 0.31	15.5 19.5 11.8	87.7 80.7 90.3	1.362

TABLE 23.- TEST RESULTS FOR CONVERTER T-2

	TARGET/ CALCULATED	EXHAUST	CATALYST	50% CONVERSION		
EST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME,	1 7550. 1 1 1000	REDOX
40.	RATIO	AND UNITS	CONCENTRATION	•	EFFICIENCI,	RATIO
NO.	MANORES I	AND UNITS	CONCENTRATION	(320)	2 <u>2.07</u> 0 0000	swijna liv
T-2	14.85	HC, ppmC	87		81.0	0.250
4/1/91	14.87	LOW CO, ppm	0		99.3	
		CO, ppm	2516			
		NOX, ppm	1622		21.9	
		CO2, %	14.42			
		O2, %	0.64			
	14.65	HC, ppmC	174		90.5	0.537
	14.69	LOW CO, ppm	0		99.0	
	14.00	CO, ppm	4237	:	99.0	
		NOX, ppm	1588		56.1	
		CO2, %	14.42		30.1	
		O2, %	0.49			
	14.55	HC, ppmC	212		92.2	0.771
	14.58	LOW CO, ppm	0		97.2	0.77
	14.56	CO, ppm	5017		37.2	
		NOX, ppm	1577		66.8	
		CO2, %	14.49		60.8	
		O2, %	0.40			
	14.45	HC, ppmC	237		88.4	1.01
	14.51	LOW CO, ppm	0		89.2	
		CO, ppm	5961			
		NOX, ppm	1566		72.1	
		CO2, %	14.49		}	
		O2, %	0.35		<u> </u>	
	14.4	HC, ppmC	299		89.0	1.31
	14.44	LOW CO, ppm	0		83.0	}
		CO, ppm	6707		79.4	· ·
		NOX, ppm	1555		78.3	
		CO2, %	14.49			
		O2, %	0.30			
	14.30	HC, ppmC	374		85.4	2.09
	14.31	LOW CO, ppm	0		77.3	
		CO, ppm	8567		61.1	
		NOX, ppm	1521		89.3	
		CO2, %	14.49			
		O2, %	0.22			
	14.45	HC, ppmC	262	20.5	87.4	1.07
	14.40	LOW CO, ppm	0	21.0	84.3	1
		CO, ppm	6258			
		NOX, ppm	1588	21.0	72.5	
		CO2, %	14.65	E .	/2.5	
		O2, %	0.35	•		

TABLE 24. TEST RESULTS FOR CONVERTER T-3

	TARGET/ CALCULATED	EXHAUST	CATALYST	50% CONVERSION		
EST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME,		REDOX
NO.	RATIO	AND UNITS	CONCENTRATION		96	RATIO
		and the second second second				
T-3	14.85	HC, ppmC	75		77.9	0.207
4/03/91	14.89	LOW CO, ppm	0		99.0	
•		CO, ppm	2041			
	,	NOX, ppm CO2, %	1355		21.2	
		O2, %	14.49 0.64		:	•
	44.05	•			00.0	0.504
	14.65	HC, ppmC	150		88.9	0.501
	14.70	LOW CO, ppm	3680	·	98.9	
		CO, ppm NOX, ppm	1288		51.6	
		CO2, %	14.49		31.0	
		O2, %	0.47			
 	14.55	HC, ppmC	199		89.0	0.900
	14.55	LOW CO, ppm	0	·	98.4	0.300
	1	CO, ppm	5089			
		NOX, ppm	1265]	72.3	
		CO2, %	14.65			
		O2, %	0.35			
	14.45	HC, ppmC	299		87.2	1.375
	14.44	LOW CO, ppm	0		86.7	
]	CO, ppm	6258		86.1	
		NOX, ppm	1265		78.2	
		CO2, %	14.49			
		O2, %	0.27			
	14.4	HC, ppmC	299		87.2	1.470
	14.42	LOW CO, ppm	0	·	88.6	
	,	CO, ppm	6707		85.1	
		NOX, ppm	1243		85.8	
	ļ.	CO2, %	14.49	i		
		O2, %	0.27			
	14.30	HC, ppmC	361		83.4	1.918
	14.34	LOW CO, ppm	0		73.2	
		CO, ppm	8093		64.8	
		NOX, ppm	1231		92.8	
		CO2, %	14.49			
		O2, %	0.25			
	14.45	HC, ppmC	287	19.0	86.6	1.194
		LOW CO, ppm	0	_	88.5	
		CO, ppm	6258	30.0	86.1	
		NOX, ppm	1265	18.0	78.2	
		CO2, %	14.49			
		O2, %	0.32	1		1

TABLE 25. TEST RESULTS FOR CONVERTER T-4

	TARGET/	EVALABIOT	0.711707	-44/ 0011/220101		
TEST	CALCULATED AIR-FUEL	EXHAUST CONSTITUENTS	CATALYST INLET	50% CONVERSION		BERAY
10. ES	RATIO	AND UNITS	CONCENTRATION	LIGHT-OFF TIME, (SEC)	EFFICIENCY,	REDOX RATIO
						
T-4	14.85	HC, ppmC	62		82.3	0.204
4/03/91	14.90	LOW CO, ppm	0		99.3	
		CO, ppm	2041			
		NOX, ppm	1366		18.2	
		CO2, %	14.33	·		
		02, %	0.64			
	14.65	HC, ppmC	125		86.7	0.483
	14.70	LOW CO, ppm	. 0		98.9	
		CO, ppm	3611			
		NOX, ppm	1332		50.5	
		CO2, %	14.33			
		O2, %	0.47			
	14.55	HC, ppmC	187		91.2	0.892
	14.55	LOW CO, ppm	0		99.0	
		CO, ppm	5089			
		NOX, ppm	1299	*	71.1	
		CO2, %	14.33			
		02, %	0.35			
	14.45	HC, ppmC	336		87.0	1.700
	14.37	LOW CO, ppm	0		79.9	1.700
	14.57	CO, ppm	7780	1	79.7	
		NOX, ppm	1243		97.0	
		CO2, %	14.33			
		O2, %	0.27	ļ		·
	44.4		299	·	87.2	1.548
	14.4	HC, ppmC LOW CO, ppm	299		87.8	1.540
	14.41	, ,	7010		89.4	
		CO, ppm	1163		90.3	[
		NOX, ppm CO2, %	14.33		50.3	
		O2, %	0.27	·		
						
	14.30	HC, ppmC	361		84.9	1.875
	14.35	LOW CO, ppm	0		82.1	
		CO, ppm	7780		78.9	
		NOX, ppm	1151		97.8	
		CO2, %	14.17			
		O2, %	0.25			
	14.45	HC, ppmC	324	25.0	79.9	1.820
		LOW CO, ppm	0		66.1	
		CO, ppm	7625	46.0	58.2	1
]	NOX, ppm	1163	16.5	94.6	
		CO2, %	14.33			
=		O2, %	0.25			

Table 26. Test results for converter T-s

	TARGET/					
(TPAT	CALCULATED AIR-FUEL	EXHAUST		50% CONVERSION		DEBAY
YEST NO:	RATIO	CONSTITUENTS AND UNITS	INLET CONCENTRATION	LIGHT-OFF TIME, (SEC)	erficiency, %	REDOX RATIO
				(OLO)		
T-5	14.85	HC, ppmC	50		80.1	0.183
4/4/91	14.96	LOW CO, ppm	0		98.2	
		CO, ppm NOX, ppm	2109 1377	÷	14.3	
		CO2, %	14.33		14.3	
		O2, %	0.74		;	
	14.65	HC, ppmC	125		84.1	0.520
	14.68	LO₩ CO, ppm	0		97.8	0.050
		CO, ppm	3749			
		NOX, ppm	1421	·	51.0	
İ		CO2, %	14.49			
		O2, %	0.44			
	14.55	HC, ppmC	174		86.1	0.802
	14.57	LOW CO, ppm	0		98.1	
		CO, ppm	4589		96.3	
		NOX, ppm	1344		66.5	
		CO2, %	14.49			
		O2, %	0.35			
Ļ	14.45	HC, ppmC	287		84.7	1.549
)	14.40	LOW CO, ppm	0			
		CO, ppm	7163		83.4	
		NOX, ppm	1265		93.0	
,		CO2, % O2, %	14.33 0.27		·	
	900				95.4	4 500
ļ	14.40	HC, ppmC LO₩ CO, ppm	299		85.4	1.568
	19.90	CO, ppm	7239		84.4	
		NOX, ppm	1277		92.1	
	1	CO2, %	14.33			
		02, %	0.27			
	14.30	HC, ppmC	336	•	79.7	2.325
	14.30	LO₩ CO, ppm				
		CO, ppm	8329		56.7	
		NOX, ppm	1243		92.3	ŀ
		CO2, %	14.33			
		O2, %	0.20			
	14.45	HC, ppmC	249	20.5	84.6	1.541
		LO₩ CO, ppm	0		86.9	
	1	CO, ppm	6556	23.5	83.4	<u> </u>
`		NOX, ppm	1299	14.0	89.3	
	1	CO2, %	14.33			
	L	O2, %	0.24		<u> </u>	

Table 27. Test results for converter T-6

	TARGET/ CALCULATED	EXHAUST	CATALYST	50% CONVERSION		
JEST	AIR-FUEL	CONSTITUENTS	INLET	LIGHT-OFF TIME,		REDOX
1 NO :	RATIO	AND UNITS	CONCENTRATION	(SEC)	%	RATIO
T-6	14.85	HC, ppmC	50		80.1	0.217
4/4/91	14.90	LOW CO, ppm	0		97.3	·
		CO, ppm	2217			
1		NOX, ppm	1432		15.6	•
		CO2, %	14.17			
		O2, %	0.64			
	14.65	HC, ppmC	137	·	86.3	0.625
	14.64	LOW CO, ppm	0		96.5	
1		CO, ppm NOX, ppm	4307 1421		55.3	
		CO2, %	14.33		33.3	
		O2, %	0.42			
	14.55	HC, ppmC	179		87.1	0.867
	14.55	LOW CO, ppm	0		95.6	0.007
		CO, ppm	5232			
		NOX, ppm	1432		68.6	
		CO2, %	14.33			
<u> </u>		O2, %	0.36			
4	14.45	HC, ppmC	287		86.6	1.400
1	14.43	LOW CO, ppm	0	•	91.0	
]	CO, ppm	7010 1344	· •	86.7 86.0	
		NOX, ppm CO2, %	14.49		66.0	
		O2, %	0.30			•
	14.4	HC somC	262		84.1	1.583
	14.40	HC, ppmC LO₩ CO, ppm	0		86.3	1.000
	14.40	CO, ppm	6934	-	81.9	
		NOX, ppm	1377		87.2	
		CO2, %	14.42			
		O2, %	0.25			
	14.30	HC, ppmC	324		81.5	2.021
	14.33	LO₩ CO, ppm	0		78.3	
		CO, ppm	8093		69.8	
		NOX, ppm	1355		90.7	
		CO2, % O2. %	14.33	·	!	
	1		<u> </u>			
	14.45	HC, ppmC	254	27.0	82.8	1.587
		LO₩ CO, ppm	7010	26.0	85.1 86.7	
Ļ		CO, ppm NOX, ppm	7010 1410	36.0 17.5	80.7 82.2	
)		CO2, %	14.33	17.5	96.6	
		O2, %	0.25			

TABLE 28. EXHAUST SYSTEM REACTION CHECK

Test Dates: 4/23/91 and 5/2/91

Cat. in Temp. Deg. F	Target Air-Fuel Ratio	Exhaust Constituents and Units	Exhaust Port Concentration	Catalyst Inlet Concentration	Change, %	Port Redox Ratio	Cat in Redox Ratio
750	14.85	HC, ppmC CO, ppm NO _X , ppm CO ₂ , % O ₂ , %	623 3473 578 14.33 0.83	87 1771 575 14.49 0.68	-86.0 -49.0 -0.5 +1.1 -18.2	0.380	0.186
750	14.3	HC, ppmC CO, ppm NO _x , ppm CO ₂ , % O ₂ , %	860 8250 596 14.33 0.68	349 6707 564 14.49 0.51	-59.4 -18.7 -5.3 -1.1 -24.4	0.961	0.925
930	14.85	HC, ppmC CO, ppm NO _X , ppm CO ₂ , % O ₂ , %	1209 4420 1345 14.33 1.05	37 1230 1469 14.65 0.70	-96.9 -72.2 +9.2 +2.2 -33.3	0.425	0.113
930	14.65	HC, ppmC CO, ppm NO _X , ppm CO ₂ , % O ₂ , %	1134 4874 1266 14.49 0.76	60 1906 1323 14.81 0.47	-94.7 -60.9 +4.5 +2.2 -38.6	0.597	0.254
930	14.3	HC, ppmC CO, ppm NO _X , ppm CO ₂ , % O ₂ , %	14% 9289 1209 14.20 0.60	287 6782 1312 14.65 0.25	-80.8 -27.0 +8.5 +3.1 -58.3	1.274	1.565

ပ္က

TABLE 29. CO EFFICIENCY SPREAD FOR QA CONVERTER TESTS

Redox Ratio		CO <u>% Efficiency Spread</u>
0.6		0.2
0.8		0.2
0.1	-	<3.5
1.2	14	3.5
1.4		3.5
1.6		3.0
1.8		3.0
2.0		4.0

FIGURES

FIGURE 1. SCHEMATIC OF SLAVE ENGINE EXHAUST SYSTEM

HC Catalysts B-7 TO B-12

FIGURE 2. HC EMISSIONS FROM CONVERTERS B-7 TO B-12

FIGURE 3. CO EMISSIONS FROM CONVERTIERS B-7 TO B-12

THE SHAPE IN

NOX Catalysts B-7 TO B-12

FIGURE 4. NO_x EMISSIONS FROM CONVERTERS B-7 TO B-12

42

HC Catalysts B-13 to B-14

FIGURE 5. HC EMISSIONS FROM CONVERTERS B-13 TO B-14

.

CO Catalysts B-13 to B-14

FIGURE 6. CO EMISSIONS FROM CONVERTERS B-13 TO B-14

NOX Catalysts B-13 to B-14

45

FIGURE 7. NO_x EMISSIONS FROM CONVERTERS B-13 TO B-14

HC Catalysts E-1 to E-6

FIGURE 8. HC EMISSIONS FROM CONVERTERS E-1 TO E-6

CO Catalysts E-1 to E-6

FIGURE 9. CO EMISSIONS FROM CONVERTERS E-1 TO E-6

NOX Catalysts E-1 to E-6

FIGURE 10. NO_x EMISSIONS FROM CONVERTERS E-1 TO E-6

HC
Catalysts F2LA, F2RA, F6LA and F6RA

FIGURE 11. HC EMISSIONS FROM CONVERTERS F2LA, F2RA, F6LA AND F6RA

(=)

Catalysts F2LA, F2RA, F6LA and F6RA

FIGURE 12. CO EMISSIONS FROM CONVERTERS F2LA, F2RA, F6LA AND F6RA

ሂካ

NOX Catalysts F2LA, F2RA, F6LA and F6RA

Figure 13. No $_{\rm x}$ emissions from converters F2LA, F2RA, F6LA and F6RA

51

HC Catalysts T-1 TO T-6

52

FIGURE 14. HC EMISSIONS FROM CONVERTERS T-1 TO T-6

CO Catalysts T-1 TO T-6

FIGURE 15. CO EMISSIONS FROM CONVERTERS T-1 TO T-6

NOX Catalysts T-1 TO T-6

FIGURE 16. NO_x Emissions from converters T-1 to T-6

50% Conv. Light Off Efficiency Catalysts B-7 TO B-12

FIGURE 17. 50% LIGHT-OFF EFFICIENCY FOR CONVERTERS B-7 TO B-12

FIGURE 18. 50% LIGHT-OFF EFFICIENCY FOR CONVERTERS B-13 TO B-14

50% Conv. Light Off Efficiency Catalysts E-1 to E-6

FIGURE 19. 50% LIGHT-OFF EFFICIENCY FOR CONVERTERS E-1 TO E-6

50% Conv. Light Off Efficiency Catalysts F2LA, F2RA, F6LA and F6RA

FIGURE 20. 50% LIGHT-OFF EFFICIENCY FOR CONVERTERS F2LA, F2RA, F6LA AND F6RA

50% Conv. Light Off Efficiency Catalysts T-1 TO T-6

FIGURE 21. 50% LIGHT-OFF EFFICIENCY FOR CONVERTERS T-1 TO T-6

- + QA2 5/02/91
- QA2 5/15/91

- * .- QA2 5/14/91 ».
- × QA2 5/16/91

FIGURE 22. QA CONVERTER CO EFFICIENCIES

2

APPENDICES

APPENDIX A

PROJECT REQUEST AND SUPPORTING DOCUMENTS

SOUTHWEST RESEARCH INSTITUTE

6220 CULEBRA ROAD . POST OFFICE DRAWER 20910 . SAN ANTONIO, TEXAS, USA 70228-0916 . (912) 804-5111 . TELEX 244846

December 14, 1990

TO:

Ethyl Corporation

Ethyl Tower

451 Florida Street

Baton Rouge, Louisiana 70801-1780

ATTN:

Dr. Ben F. Fon

Health and Environmental Department

SUBJECT:

SwRI Proposal 08-10993, "Evaluation of Used Catalytic Conveners."

L INTRODUCTION

This proposal is in response to your letter request of December 4, 1990, and subsequent telephone discussions. A copy of the letter and its attachments are included as Appendix A to this proposal. The work proposed herein will be conducted by the Department of Emissions Research (DER) of Southwest Research Institute (SwRI) at their laboratory in San Antonio, Texas.

The letter request divided the work up into three phases, with the work to be done in phases two and three dependent on the outcome of the work in phase one. Since a prompt response was desired and the work in Phases 2 and 3 is not completely defined at this time, this proposal covers Phase 1 only.

II. STATEMENT OF WORK

Used catalytic conveners furnished by Ethyl Corporation will be evaluated for efficiency using a slave engine. The paragraphs below discuss the conveners to be tested, slave engine, test cell, test procedures, and emissions to measured.

A. Converters to be Tested

Ethyl Corp. will furnish 20 used conveners for testing. It is our understanding that the conveners are from a variety of automobiles, but that they are in pairs, so that there will be a maximum of 10 different types of conveners. One convener of each pair will be from a car operated using fuel with an MMT additive, and the other convener of each pair from a similar car using fuel without the MMT additive. We would prefer that the conveners were coded so that we did not know which convener was which.

SAN ANTONIO, TEXAS

HOUSTON, TEXAS . DETROIT, MICHIGAN . WASHINGTON, DC

It is also our understanding that "many" of these conveners have had the front diffuser section cut off very close to the first catalyst brick. This situation is of some concern.

In telephone conversations with Ethyl Corp. we have discussed possible fixes for the lack of entrance diffusers. These fixes have included various ways of attaching new entrance diffusers and the possibility of recanning the catalyst bricks. Since the results of these tests will be thoroughly scruminized by a number of organizations, we think that it would be best to disturb the conveners as little as possible before the efficiency tests. Therefore, we propose to fabricate and install new entrance diffusers for each of the conveners before the convener efficiency tests. This will eliminate criticisms about possible leaks in temporary "quick fix" type diffusers, and possible criticisms about errors, damage, and thermal characteristics, if the catalyst bricks were recanned. For Phase 2 tests, however, the catalyst bricks must be recanned.

B. Converter Radiographs

Each convener will be radiographed (x-rayed) to determine the internal condition of the catalyst bricks. Radiographing whole conveners has become routine at SwRI. This procedure enables substrate cracks, meltdowns, and movement to be identified without disassembling the convener.

C. Test Cell and Slave Engine

Testing will be conducted in Cell No. 6 of SwRI's Department of Emissions Research. A 350 CID Chevrolet gasoline engine is installed in the cell for light-off and efficiency evaluations. The load absorber for the engine is an eddy current dynamometer capable of absorbing up to 175 horsepower at 6000 rpm. The amount of engine exhaust that flows through the convener is adjustable, to permit a wide range of flow through the convener test section.

The engine is equipped with an aftermarket electronic throttle body fuel injection system, manufactured by Air Sensors Corp. of Seattle, Washington. This fuel injection system permits adjustment of the engine air fuel ratio over the operating range of the engine. SwRI has modified the fuel injection system electronics to permit the air fuel ratio to be cycled from rich to lean settings at frequencies from 0.25 to 2 hertz.

D. Fuel

The fuel used for these tests will be Howell EEE emission test gasoline.

E. Evaluation Tests Performed

The performance test on each converter will consist of a light-off test patterned after the GM "Cell 102 Test." and a warmed-up efficiency evaluation at 6 different Redox ratios.

The Redox ratio, R. is defined as shown below:

$$R = \frac{CO \div H_2 \div 3(HC)}{2(O_2) \div NO}$$

The light-off test begins with the converter below 40 degrees C., and the engine exhaust bypassing the converter. For these tests the engine speed will be set at 1800 RPM, the Redox ratio will be set at 1.0, and the fuel cycled 0.5 A/F ratios about this Redox setting at a frequency of 1.0 hertz. When a stable engine exhaust temperature of 500 degrees C. is reached, the exhaust will be switched to flow through the

convener using a quick-acting valve. Emission concentrations will be measured communusly before and after the convener, and the time to reach 50 percent and 75 percent conversion efficiency calculated.

The warmed-up efficiency evaluation will be conducted at the same engine RPM and exhaust temperature, but at six different Redox ratios. These Redox ratios are: 0.8, 1.0, 1.2, 1.4, 1.6, and 1.8.

F. Emissions Measured

Heated sample lines before and after the converter test section deliver exhaust samples to the emissions instrument cart. Two complete sets of emissions instrumentation are available at the cell for measuring emission concentrations before and after the catalytic converter being tested. To obtain the converter efficiencies, total HC, CO, and NO_x , will be measured before and after the converter. In addition, O_2 will be measured before and after the converter and CO_2 before the converter. Total hydrocarbons will measured by heated FID; CO and CO2 by NDIR; O_2 by polarographic instruments; and NO_x by heated chemiluminesce.

Currently, there is no provision for measuring H₂ in the test cell. It would take considerable time, effort, and expense to provide such capability in the cell. At this time we are uncertain as to how the H₂ necessary for the Redox calculation will be obtained, but are proposing that it be estimated from other emissions.

G. Quality Assurance Tests

To provide evidence that the conveners were all evaluated on the same feed gas composition and that the entire procedure is repeatable, three light-off and efficiency tests will be run using the cell QA standard convener. One test will be run before beginning the evaluations on the Ethyl conveners, one test after 10 conveners have been tested, and the final test at the completion of testing for all 20 conveners. One convener, chosen at random, will be tested five times for light-off and efficiency at two different Redox ratios to define the test-to-test repeatability for this set of conveners.

H. Test Chronology

Before testing can begin, a decision must be made as to how to repair the conveners that have their entrance diffuser removed. Once this decision is made, the repairs can be initiated. It is not necessary that repairs on all conveners be completed before testing begins. It is only necessary that sufficient conveners have been repaired so that these will be a ready supply of conveners to be tested. Once the conveners have been repaired, the whole convener will radiographed (x-rayed).

After a sufficient number of conveners have been repaired and radiographed, the convener testing can begin. The order of testing of the conveners should perhaps be randomized for statistical reasons. On the other hand, Ethyl may desire back-to-back comparisons of the convener pairs. We will test the conveners in any order desired; however, if no preference is expressed, we will test the conveners in random order.

The test results will be compiled as the testing progresses. Preliminary data for a convener will be available to Ethyl within three days after it completes testing, if desired. At the completion of the testing a data-only letter final report will be sent to Ethyl Corp. with tables of test results for all conveners.

III. SCHEDULE AND PRICE

Work cannot be scheduled until a signed contract and an initial payment are received. It is expected that this will occur before the end of December, 1990. Since many of the conveners do not have a front diffuser cone, some preparation will be required before testing of the conveners can begin. If a signed contract is received before the end of December 1990, we can begin work on repairing or recanning the catalysts; but because of holiday vacation schedules, it is not expected that the conveners would be ready for testing before the second week in January. It is estimated that the work specified in Phase 1, as outlined above, can be completed within two months from the start of the project.

This work is proposed on a fixed price basis. The price for the work proposed is \$53,500. This price includes all preparations, emissions sampling, and data reporting. A formal final report was not requested, and is not included in the price above.

IV. CLOSURE

It has been our pleasure to respond to your request for emission evaluations on 20 used catalytic converters. We have tried to make our response as complete as possible, but if you have any questions or need further information, please contact Mel Ingalls at (512) 522-2645. A contract for the proposed work is included as Appendix B of this proposal. If this proposal is satisfactory, please return the signed contract to Ms. Dorothy Rosales, Contract Administrator. Any questions of a contractual nature should be directed to Ms. Rosales at (512) 522-2230.

Prepared and Submitted by:

Mein 7. insalle

Melvin N. Ingalls

Senior Research Engineer

Department of Emissions Research

Automotive Products and Emissions

Research Division

Approved by:

Charles T. Hare

Director

Department of Emissions Research

Ohgelest. Dan

Automotive Products and Emissions

Research Division

cc: Bruce Bykowski

APPENDIX A
REQUEST FOR PROPOSAL

ETHYL CORPORATION

Health and Environment Department

Air Conservation

December 4, 1990

Ethyl Towar 451 Florida Streat Basen Rouga, LA 70601 77777

Mr. Melvin N. Ingalls Southwest Research Institute 6220 Culebra Road San Antonio, Texas 78228-0510

Dear Mel:

Ethyl Corporation wants to conduct a catalyst testing program at SWRI in San Antonio. The following study parameters are desired:

- o All catalysts to be evaluated using exhaust gas from one "slave" test engine.
- o Engine fuel to be Howell EEE
- o Conversion efficiency determinations made with cycles between rich and lean at frequency of 1Hz with amplitude of about 0.5 units of A/F ratio.

The first phase of the study will involve 20 catalyst monoliths for "light-off" and steady state evaluations of conversion efficiency at redox ratios of 0.8, 1.0, 1.2, 1.4, 1.6 and 1.8 for the three pollutants, hydrocarbons, carbon monoxide and nitrogen oxide.

The second phase is to be considered as optional depending on the outcome of consultations with EPA and Ford on the results of Phase 1. The following work should be costed for Phase 2**:

- o Repeats of Phase 1 after removal of last half of the monolith.
- o Metals and surface area on the removed portion.
- o Repeats of Phase 1 after removal of three fourths of the monolith.
- o Metals and surface area on the removed portion.
- o Metals and surface area on the remaining quarter.

**Run conditions identical to Phase 1.

^{*}Please make recommendations for these parameters.

A third phase may be additional monoliths processed through Phases 1 and 2.

There are many details to be settled before starting work. Many of these details involve situations described in the SAE paper by Shulman et al (#820276) entitled "Comparison of Measured and Predicted Three-Way Catalyst Conversion Efficiencies under Dynamic Air-Fuel Ratio Conditions."

Sincerely,

Ben F. Fort, Jr., Ph.D.

Senior Mathematics

and Statistical Associate

BFF:cr 040BFF90 APPENDIX B

QA DOCUMENTATION

CATALYST INLET OXYGEN CONCENTRATIONS AND STANDARD DEVIATION

					Air to F	uel Ratio			
CONV.	RUN	DATE	14.85	14.65	14.55	14.45	14.40		L/O 14.45
	NO.		O2 CONC.	O2 CONC.	02 CONC.	O2 CONC.	02 CONC.	02 CONC.	02 CONC.
B-7	a district to	4/12/91	0.59	0.42	0.35	0.27	0.25	0.19	0.32
B-7	1111 and 1	5/6/91	0.75	0.50	0.45	0.35	0.34	0.30	0.35
B-8	1	4/16/91	0.64	0.47	0.37	0.33	0.30	0.25	0.35
B-8	2	5/09/91	0.68	0.45	0.38	0.33	0.30	0.25	0.33
B-9	1	4/17/91	0.66	0.44	0.40	0.32	0.29	0.24	0.28
B-10	1	4/16/91	0.64	0.48	0.35	0.31	0.30	0.24	0.36
B-10	2	5/6/91	0.68	0.50	0.43	0.36	0.32	0.28	0.38
B-11	1	4/17/91	0.64	0.44	0.37	0.30	0.27	0.21	0.31
B-12	1	4/16/91	0.64	0.48	0.37	0.32	0.25	0.21	0.30
B-12	2	5/13/91	0.68	0.45	0.40	0.33	0.30	0.28	0.38
B-13	1	3/11/91	0.49	0.35	0.35	0.30	0.25	0.20	0.35
B-13	2	3/25/91	0.69	0.52	0.47	0.40	0.37	0.32	0.35
B-13	3	3/29/91	0.69	0.50	0.48	0.40	0.35	0.30	0.37
B-14	1	3/8/91	0.44	0.40	0.32	0.30	0.27	0.22	0.42
B-14	2	3/26/91	0.64	0.49	0.44	0.40	0.35	0.30	0.40
B-14	3	3/29/91	0.69	0.52	0.44	0.35	0.32	0.30	0.40
E-1	1	3/1/91	0.44	0.27	0.32	0.20	0.16	0.37	0.35
E-1	2`	3/21/91	0.57	0.37	0.35	0.27	0.27	0.20	0.25
E-1	3	3/28/91	0.64	0.42	0.35	0.27	0.25	0.20	0.25
E-1	4	4/23/91	0.59	0.44	0.32	0.27	0.22	0.22	0.27
E-2	1	3/4/91	0.40	0.37	0.30	0.27	0.20	0.17	0.40
E-2	2	3/22/91	0.59	0.44	0.37	0.30	0.35	0.30	0.35
E-2	3	3/26/91	0.64	0.44	0.37	0.32	0.27	0.27	0.30
E-2	4	3/28/91	0.62	0.47	0.40	0.35	0.32	0.30	0.35
E-3	1	4/10/91	0.58	0.41	0.32	0.32	0.25	0.26	0.25
E-4	1	4/10/91	0.67	0.40	0.35	0.26	0.24	0.20	0.25
E-5	1	4/11/91	0.59	0.40	0.31	0.25	0.22	0.17	0.27
E-6	1	4/11/91	0.62	0.44	0.35	0.30	0.25	0.17	0.32
E-6	2	4/11/91	0.62	0.44	0.35	0.30	0.25	0.17	0.32
F2LA	1	4/29/91	0.59	0.44	0.41	0.32	0.27	0.22	0.32
F2RA	ı	4/24/91	0.69	0.44	0.44	0.32	0.30	0.27	0.30
F6LA	1	4/25/91	0.67	0.44	0.37	0.32	0.30	0.27	0.30
F6RA	1	4/24/91	0.67	0.49	0.37	0.32	0.30	0.27	0.32
T-1	1	4/1/91	0.64	0.49	0.37	0.35	0.32	0.25	0.31
T-2	1	4/1/91	0.64	0.49	0.40	0.35	0.30	0.22	0.35
T-3	1	4/03/91	0.64	0.47	0.35	0.27	0.27	0.25	0.32
T-4	1	4/03/91	0.64	0.47	0.35	0.27	0.27	0.25	0.25
T-5	1	4/4/91	0.74	0.44	0.35	0.27	0.27	0.20	0.24
T-6	1	4/4/91	0.64	0.42	0.36	0.30	0.25	0.22	0.25
						·			
		MAX	0.75	0.52	0.48	0.40	0.37	0.37	0.42
		MIN	0.40	0.27	0.30	0.20	0.16	0.17	0.24
		AVG	0.62	0.45	0.37	0.31	0.28	0.24	0.32
		ST DEV	0.07	0.05	0.04	0.04	0.04	0.05	0.05
		MAX	0.75	0.52	0.48	0.40	0.35	0.30	0.40
		MIN	0.58	0.40	0.31	0.25	0.22	0.17	0.24
		AVG	0.65	0.46	0.38	0.31	0,28	0.25	0.31
		ST DEV	0.04	0.03	0.04	0.04	0.03	0.04	0.05

NOTE: Highlighted type represents the most recent run for each converter.

All concentrations in ppm.

Instrument Range: 0-5%.

CATALYST INLET CARBON DIOXIDE CONCENTRATIONS AND STANDARD DEVIATION

					Air to F	uel Ratio	,		
CONV.	RUN	DATE	14.85	14.65	14.55	14.45	14.40	14.30	L/O 14.45
	NO.		CO2 CONC.	CO2 CONC.	CO2 CONC.	CO2 CONC.	CO2 CONC.	CO2 CONC.	CO2 CONC.
B-7	1	4/12/91	14.49	14.49	14.49	14.49	14.49	14.33	14.49
B-7	2	5/6/91	14.33	14.33	14,49	14,49	14.33	14.33	14.33
B8	1	4/16/91	14.49	14.81	14.81	14.81	14.65	14.49	14.49
B-8	2	5/09/91	14.65	14.65	14.65	14.65	14.49	14.49	14.49
B -9	1	4/17/91	14.81	14.81	14.81	14.81	14.84	14.81	14.91
B-10	1	4/16/91	14.49	14.49	14.49	14.49	14.33	14.33	14.17
B-10	2	5/6/91	14.49	14.65	14.55	14.49	14.49	14.33	14.49
B-11	1	4/17/91	14.33	14.49	14.49	14.39	14.39	14.42	14.49
B-12	1	4/16/91	14.33	14.33	14.33	14.33	14.17	14.17	14.33
B-12	2	5/13/91	14.65	14.65	14.81	14.81	14.81	14.65	14.65
B-13	1	3/11/91	14.65	14.65	14.65	14.49	14.33	14.17	14.33
B-13	2	3/25/91	14.33	14.02	14.02	14.02	14.17	14.02	14.02
B-13	3	3/29/91	14.17	14.17	14.33	14.02	14.33	14.17	14.02
B-14	1	3/8/91	14.65	14.65	14.65	14.65	14.49	14.49	14.65
B-14	2	3/26/91	14.02	14.02	14.02	14.33	14.02	14.02	13.87
B-14	3	3/29/91	14.49	14.49	14.49	14.33	14.49	14.49	14.33
E-1	1	3/1/91	14.65	14.65	14.65	14.65	14.33	14.49	14.49
E-1	2	3/21/91	13.71	13.71	13.87	13.71	13.71	13.56	13.56
E-1	3	3/28/91	14.33	14.33	14.49	14.33	14.49	14.33	14.17
E-1	4	4/23/91	14.97	14.81	14.81	14.65	14.65	14.65	14.81
E-2] 1	3/4/91	14.81	14.65	14.65	14.33	14.49	14.33	14.17
E-2	2	3/22/91	14.65	14.65	14.65	14.49	14.49	14.33	14.49
E-2	3	3/26/91	14.81	14.97	14.81	14.81	14.65	14.65	14.65
E-2	. 4	3/28/91	14.49	14.49	14.17	14.02	14.17	14.17	14.17
E-3	1	4/10/91.	14.65	14.49	14.65	14.49	14.49	14.33	14.33
E-4	1	4/10/91	14.42	14.49	14.49	14.49	14.49	14.33	14.33
E-5	1	4/11/91	14.33	14.65	14.49	14.49	14.49	14.49	14.33
E-6	1	4/11/91	14.49	14.65	14.65	14.49	14.49	14.49	14.49
E-6	ı	4/11/91.	14.49	14.65	14.65	14.49	14.49	14.49	14.49
F2LA	1	4/29/91	14.49	14.49	14.49	14.49	14.49	14.49	14.49
F2RA	l	4/24/91	14.49	14.33	14.49	14.65	14.65	14.65	14.49
F6LA		4/25/91	14.02	14.02	14.17	14.17	14.17	14.17	14.02
F6RA	1	4/24/91	14.81	14.49	14.49	14.49	14.49	14.49	14.49
T-1		4/1/91	14.49	14.65	14:49	14.49	14.33	14.65	14.39
T-2	3	4/1/91	14.42	14.42	14.49	14.49	14.49	14.49	14.65
T-3		4/03/91	14.49	14.49	14.65	14.49	14.49	14.49	14.49
T-4	1	4/03/91	14.33	14.33	14.33	14.33	14.33	14.17	14.33
T-5	ľ	4/4/91	14.33	14.49	14.49	14.33	14.33	14.33	P15 : F. 78:584
T-6	1	4/4/91	14.17	14.33	14.33	14.49	14.42	14.33	14.33
					Υ			τ	
		MAX	14.97	14.97	14.81	14.81	14.84	14.81	14.91
		MIN	13.71	13.71	13.87	13.71	13.71	13.56	13.56
		AVG	14.47	14.48	14.50	14.45	14.42	14.37	14.37
		ST DEV	0.24	0.25	0.22	0.23	0.20	0.22	0.25
		94455		·····	T :	The State of	r in the second	600	
		MAX	14.97	14.81	14.81	14.81	14.84	14.81	14.91
		MIN	14.02	14.02	14.17	14.02	14.17	14.17	dirin. Ny makaina
•		AVG	14.47	14.49	14.51	14.46	14.46	14.43	14.42
		ST DEV	0.21	0.18	0.17	0.19	0.16	0.17	0.20

NOTE: Highlighted type represents the most recent run for each converter.

All concentrations in ppm.

Instrument Range: 0-16%.

CATALYST INLET NITROGEN OXIDES CONCENTRATIONS AND STANDARD DEVIATION

					Air to Fuel Ratio	el Ratio			
CONV	RUN	DATE	14.85	14.65	14.55	14.45	14.40	14.30	14.30 L/O 14.45
	NO.		NOX CONC.	NOX CONC.	NO _x CONC.	NOX CONC.	NOX CONC.	NOX CONC.	NOX CONC. NOX CONC.
B-7	-	4/12/91	1174.41	1197.29	1185.86	1128.26	1162.92	1116.64	1254.00
H-1	7	16/9/5	1622.35	1588.39	1565.89	1510.03	1487.80	1487.80	1554.68
B-8	. 	4/16/91	1343.57	1298.93	1276.51	1242.71	1220.05	1197.29	1265.26
8 8	7	5/09/91	1310.12	1276.51	1185.86	1185.86	1162.92	1116.64	1197.20
6- B	***	4/17/91	1365.81	1276.51	1272.01	8.451	1244.97	1185.86	851621
B -10	. -	4/16/91	1416.84	1410.19	1310.12	1298.93	1310.12	1265.26	1321.28
B-10	7	16/9/5	1221.17	1510.03	1498.91	1487.80	1476.70	1454.52	1543.49
<u> </u>		4/17/91	1247.22	1220.05	1231.39	1162.92	1116.64	1069.78	1208.68
B-12	•	4/16/91	1339.12	1376.92	1321.28	1310.12	1254.00	1254.00	1287.73
B-12	7	5/13/91	1254.00	1254.00	1242.71	1208.68	1197.29	1197.29	1220.05
B-13	-	3/11/91	1139.85	1104.98	1104.98	1081.55	1034.24	1010.35	1116.64
B-13	7	3/25/91	1388.01	1343.57	1276.51	1254.00	1242.71	1208.68	1254.00
B-13		3/29/91	1577.13	1521.17	1487.80	1443.43	1421.27	1376.92	1423
B-14		3/8/91	1399.10	1376.92	1332.43	1310.12	1276.51	1220.05	1321.28
B-14	7	3/26/91	1287.73	1276.51	1265.26	1231.39	1231.39	1197.29	1254.00
B-14	m	3/29/91	1668.15	1633.74	1588.39	1547.97	1543.49	1521.17	57.13
<u>-</u> 교		3/1/91	1174.41	1128.26	1185.86	1093.29	1081.55	1298.93	1487.80
E-1	7	3/21/91	1116.64	1069.78	1010.35	998.34	1046.13	1010.35	1034.24
E-1	m	3/28/91	1197.29	1162.92	1128.26	1139.85	1116.64	1081.55	1128.26
<u>F-1</u>	4	473391	1321.28	1276.51	1231.39	1220.05	1162.92	1139.85	110.98
E-2	-	3/4/91	1465.61	1376.92	1343.57	1343.57	1276.51	1242.71	1057.98
E-2	7	3722/91	1532.32	1521.17	1487.80	1476.70	1487.80	1454.52	1487.80
E-2	m	3/26/91	1231.39	1174.41	1151.40	1104.98	1081.55	1069.78	1116.64
E-2	*	3728/91	1185.86	1162.92	1069.78	1046.13	1057.98	1057.98	1057.98
E-3	-	4/10/91	1443.43	1432.35	1376.92	1354.78	1298.93	1276.51	1410.19
Ţ	-	4/10/91	1399.10	1221.28	1287.73	1242.71	121.39	1174.41	1265.26
E-5	-	4/11/91	1069.78	1057.98	1034.24	1622.31	1022.31	88. 7	1069.78
9 2	-	4/11/91	1174.41	1151.40	1139.85	1081.55	1093.29	1034.24	1081.55
9	7	4/11/91	1174.41	1151.40	1139.85	1081.55	1093.29	184.24	1081.55
FZLA	-	4729/91	1668.15	1611.00	1611.00	1554.68	1543.49	122.17	1577.13
FZRA	-	4724/91	1276.51	1242.71	1242.71	1185.86	1162.92	1151.40	1151.40
FGLA	-	4725/91	1254.00	1197.29	1139.85	1093.29	1093.29	1081.55	1104.98
FGRA	-	4/24/91	1242.71	1208.68	1174.41	1220.05	1185.86	1162.92	1185.86
1-1	-	4/1/91	1611.00	1611.00	1577.13	1543.49	1565.89	1510.03	155.88
T-2		4/1/91	1622.35	1588.39	1577.13	1565.89	155.68	1521.17	1588.39
T-3	-	4/03/91	1354.70	1287.73	1265.26	1265.26	1242.TI	1231.39	1265.26
7	-	4/03/91	1365.81	1332.43	1298.93	1242.71	1162.92	1151.40	112.22
T-5	-	4/4/91	1376.92	1421.27	1343.57	1265.26	1276.51	1242.71	1208.93
9		4/4/91	1432.35	1421.27	1432.35	1343.57	1376.92	188.38 18.38	1410.19

MAX	1668.15	1633.74	1611.00	1565.89	1565.89	1521.17	1588.39
Z	1069.78	1057.98	1010.35	25.86	1022.31	998.34	1034.24
AVG	1352.44	1322.43	1292.19	1260.09	1246.11	1222.60	1274.95
ST DEV	159.39	159.64	159.34	158.03	157.85	156.52	169.28

MAX	1668.15	1633.74	1513.00 1565.89 1565.89	11.17 1588.39
Z	1069.78	1057.98	1034.24 1022.31 1022.31 99	98.34 1057.98
AVG	1390.18	1358.53	1328.13 1293.68 1278.46 123	1250.82 1302.27
ST DEV	166.44	166.13	167.00 170.20	

NOTE: Highlighted type represents the most recent run for each converter.

All concentrations in ppm.

Instrument Range: 0-2500 ppm.

CATALYST INLET CARBON MONOXIDE CONCENTRATIONS AND STANDARD DEVIATION

				 	Air to F	rei Ratio		·	
CONV.	RUN	DATE	14.85	14.65	14.55	14.45	14.40	14.30	L/O 14.45
	NO.		CO CONC.	CO CONC.	CO CONC.	CO CONC.	CO CONC.	CO CONC.	CO CONC.
3-7	1	4/12/91	2176.71	3541.58	4518.76	6257.56	6332.02	8329.17	5522.08
3-7	2	5/6/91	2379.96	4518.76	5522.08	7779.93	8092.76	9127.86	7162.60
3-8	1	4/16/91	2583.58	4237.16	5449.43	6526.44	7162.60	8567.09	6257.56
3-8	2	5/09/91	2176.71	4448.16	5232.43	6706.95	7469.86	9047.28	6706.95
3-9	1	4/17/91	2109.03	4307.37	4845.25	6376.79	7086.22	8726.51	6706.95
B-10	1	4/16/91	2312.18	3957.57	5814.29	6257.56	7010.01	8567.09	6183.26
B-10	2	5/6/91	2217.34	3679.82	4873.79	6212.96	7469.86	8966.85	6109.13
B-11	1	4/17/91	2041.37	3887.96	5304.61	5887.75	6556.46	8567.09	5667.86
B-12	1	4/16/91	2109.03	3129.14	4802.50	5741.00	6706.95	8408.31	5814.29
9-12	2	5/13/91	2176.71	3818.47	5160.40	6035.17	7162.60	8487.62	5887.75
B-13	1	3/11/91	3129.14	4027.29	4307.37	4589.49	5522.08	6035.17	3957.57
B-13	2	3/25/91	2992.33	4448.16	6481.47	7936.00	8408.31	9696.03	7315.88
B-13	3	3/29/91	1906.11	4945.22	5449,43	6706.95	7547.12	8886.58	7010.01
B-14	1	3/8/91	5741.00	3957.57	4237.16	4945.22	5376.94	6183.26	3541.58
B-14	2	3/26/91	2855.82	5160.40	6109.13	7547.12	8014.30	9614.44	7315.88
B-14	toward to	3/29/91	2992.33	4307.37	5304.61	7086.22	7779.93	8408.31	7315.88
E-1	1	3/1/91	3060.70	4448.16	4097.12	5160.40	5522.08	3266.26	6631.62
E-1	2	3/21/91	2244.43	3887.96	4518.76	5814.29	6406.66	8171.40	5961.38
E-1	3	3/28/91	1973.73	3957.57	4448.16	5887.75	6481.47	7702.15	6257.56
5-1 5-1	*******	4/23/91	2109.03	3679.82	5016.80	6257.56	7469.86	7936.00	6257.56
E-2	7	3/4/91	3472.61	3679.82	4237.16	4377.70	5160.40	5594.89	3403.74
	2	3/22/91	2244.43	3679.82	4518.76	6406.66	7315.88	8567.09	6631.62
E-2	_	3/26/91	2244.43	4237.16	5667.86	6858.13	7392.78	8886.58	6858.13
E-2	3	With the Williams	tor recessor threat time the		\$200,00 m. 2000 1 Mid 2000000000			200000000000000000000000000000000000000	> 2000000000000000000000000000000000000
E-2		3/28/91	2855.82	4237.16	5522.08	6706.95	7162.60	9047.28	6556.46
E-3		4/10/91	2447.79	4377.70	5232.43	6035.17	7624,55	8408.31	7010.01
	14 2 149 2	4/10/91	1973.73	4027.29	4945.22	6183.26	6782.45	8567,09	6257.56
E-5	F.	4/11/91	2176.71	3060.70	5203.60	5961.38	6481.47	8487.62	5449.43
E-6	1	4/11/91	2176.71	3541.58	4660.35	5814.29	6332.02	8567.09	5814.29
E-6		4/11/91	2176.71	3541.58	4660.35	5814.29	6332.02	8567.09	5814.29
F2LA	A comme	4/29/91	2352.84	4097.12	4945.22	6257.56	7469.86	8487.62	6481.47
F2RA	I' '''	4/24/91	2176.71	4448.16	5016.80	7010.01	7315.88	8886.58	7162.60
F6LA	•	4/25/91	2176.71	3887.96	5522.08	5814.29	7162.60	8567.09	6631.62
F6RA		4/24/91	2041.37	3887.96	5376.94	6481.47	7010.01	8408.31	6257.56
r-i	4 .	4/1/91	2651.55	3957.57	5376.94	6556.46	6933.98	7624.55	7162.60
r-2	•	4/1/91	2515.66	4237.16	5016.80	5961.38	6706.95	8567.09	6257.56
T-3:	ł	4/03/91	2041.37	3679.82	5088.52	6257.56	6706.95	8092.76	6257.56
r-4	1	4/03/91	2041.37	3610.65	5088.52	7779.93	7010.01	7779.93	7624.55
T-5	1	4/4/91	2109.03	3749.09	4589.49	7162.60	7239.15	8329.17	6556.46
Γ - 6	1	4/4/91	2217.34	4307.37	5232.43	7010.01	6933.98	8092.76	7010.01
		1444	T			T		1 2000	T ========
		MAX	5741.00	5160.40	6481.47	7936.00	8408.31	9696.03	7624.55
		MIN	1906.11	3060.70	4097.12	4377.70	5160.40	3266.26	3403.74
		AVG	2445.64	4015.16	5061.41	6311.85	6939.79	8210.85	6276.43
		ST DEV	649.23	425.29	513.07	779.61	714.25	1145.89	933.40
		[3.4.5.2	T			Taxoning Times			d (10 - 171) <u></u>
		MAX	2992.33	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• *** *** *** **** ****	7779.93			4075-96-786-020-03
		MIN	1906.11	3060.70	4589.49	5814.29	6332.02	7624.55	5449.43
		AVG	2252.64	4029.18	5146.95	6501.77	7146.13	8502.81	6554.77
		ST DEV	264.50	396.84	253.86	555.77	420.61	385.86	545.94

NOTE: Highlighted type represents the most recent run for each converter.

All concentrations in ppm.

Instrument Range: 0-15000 ppm.

CATALYST INLET HYDROCARBON CONCENTRATIONS AND STANDARD DEVIATION

					Air to F	uel Ratio			
CONV.	RUN	DATE.	14.85	14.65	14.55	14.45	14.40	14.30	L/O 14.45
	NO.		HE CONC.	HC CONC.	HC CONC.	HC CONC.	HC CONC.	HC CONC.	HC CONC.
3-7	1	4/12/91	49.85	94.72	144.57	219.34	224.33	311.56	186.94
3-7	2	5/6/91	99.70	224.33	261.71	373.88	386.34	423.73	348.95
3-8	1	4/16/91	67.30	152.04	211.86	254.24	299.10	353.94	249.25
3-8	2	5/09/91	87.24	211.86	249.25	361.41	411.26	448.65	373.88
3-9	1	4/17/91	69.79	174.48	211.86	286.64	311.56	396.31	299.10
B-10	1	4/16/91	62.31	137.09	236.79	249.25	274.18	348.95	261.71
3-10	2	5/6/91	82.25	162.01	236.79	286.64	348.95	411.26	261.71
3-11	1	4/17/91	57.33	149.55	224.33	249.25	286.64	373.88	254.24
3-12	1	4/16/91	52.34	112.16	186.94	224.33	261.71	348.95	224.33
3-12	2	5/13/91	87.24	174.48	286.64	311.56	373,88	423.73	324.03
3-13	1	3/11/91	249.25	324.03	324.03	373.88	423.73	448.65	324.03
3-13	2	3/25/91	137.09	286.64	324.03	274.18	311.56	498.50	286.64
3-13	3	3/29/91	119.64	174,48	214.36	274.18	324.03	373.88	286.64
3-14	1	3/8/91	274.18	336.49	348.95	386.34	436.19	498.50	274.18
3-14	2	3/26/91	124.63	229.31	286.64	348.95	361.41	461.11	361.41
3-14	3	3/29/91	129.61	191,92	239.28	311.56	348.95	373.88	348.95
3-1	1	3/1/91	124.63	179.46	171.98	199.40	224.33	149.55	299.10
I-1	2	3/21/91	74.78	149.55	199.40	274.18	299.10	373.88	274.18
E-1	3	3/28/91	62.31	162.01	186.94	261.71	286.64	336.49	249.25
:-1	4	4/23/91	74.78	137.09	199,40	274.18	311.56	336.49	249.25
3-2	1	3/4/91	174.48	149.55	174.48	174.48	199.40	211.86	124.63
E-2	2	3/22/91	49.85	137.09	174.48	274.18	299.10	324.03	299.10
-2	3	3/26/91	62.31	162.01	249.25	29 9 .10	324.03	373.88	274.18
:-2	4	3/28/91	99.70	174.48	249.25	299.10	324.03	398.80	299.10
:-3	3	4/10/91	54.84	124.63	174,48	211.86	274.18	311.56	254.24
:-4		4/10/91	39.88	124.63	174.48	211.86	249.25	324.03	211.86
:-5	1	4/11/91	37.39	74.78	174.48	199.40	224.33	311.56	186.94
E-6	1	4/11/91	37.39	99.70	162.01	211.86	224.33	324.03	199.40
-6	2	4/11/91	37.39	99.70	162.01	211.86	224.33	324.03	199.40
2LA	1	4/29/91	87.24	174.48	224.33	286.64	324.03	373.88	286.64
ZRA	1	4/24/91	62.31	162.01	211.86	286.64	299.10	373.88	299.10
6LA	1	4/25/91	84.75	154.54	231.80	279.16	314.06	386.34	299.10
6RA	r	4/24/91	67.30	147.06	224.33	286.64	304.09	363.91	274.18
Flore	i .	4/1/91	87.24	149.55	219.34	274.18	299.10	324.03	311.56
-2	1	4/1/91	87.24	174.48	211.86	236.79	299.10	373.88	261.71
[-3	1	4/03/91	74.78	149.55	199.40	299.10	299.10	361.41	286.64
[—4		4/03/91	62.31	124.63	8.0 Per 1	336.49	299,10	361.41	324.03
r-5		4/4/91	49.85	124.63	174.48	286.64	299.10	336. 49	249.25
6-1	1	4/4/91	49.85	137.09	179.46	286.64	261.71	324.03	254.24
		MAX	274.18	336.49	348.95	386.34	436.19	498.50	373.88
		MIN	37.39	74.78	144.57	174.48	199.40	149.55	124.63
		AVG	86.98	164.31	218.06	275.58	303.77	363.46	272.64
		STD DEV	1	54.69	46.98	50.78	54.55	64.58	50.92
		MAX	129.61	224.33	286.64	373.88	411.26	448.65	373.88
		MIN	37.39	74.78	162.01	199.40	224.33	311.56	186.94
		AVG	74.57	154.02	213.42	280.09	308.24	367.12	
			1 7.31	1.77.04	Factor 52.5.74	l		1	1

NOTE: Highlighted type represents the most recent run for each converter.

All concentrations in ppm.

STD DEV

Instrument Range: 0-2500 ppm.

43.30

44.26

37.11

45.25

A/F RATIO Catalysts B-7 TO B-12

A/F RATIO
Catalysts B-13 to B-14

A/F RATIO
Catalysts E-1 to E-6

